REPORT C7074

AUGUST 2016
GEOENVIRONMENTAL APPRAISAL
for land at
FORMER SIEMENS FACTORY, HEBBURN, GATESHEAD
prepared for
MILLER HOMES (NORTH EAST) LTD

REPORT NUMBER:	C7074	REPORT STATUS:	FINAL
REPORT TYPE:	GEOENVIRONMENTAL APPRAISAL		
REPORT DATE:	AUGUST 2016	Tel: 01913789972	
SITE:	FORMER SIEMENS FACTORY, HEBBURN, GATESHEAD	Fax: 0191 378 1537	
PREPARED	MILLER HOMES (NORTH EAST) LTD	SOR:	Sirius Geotechnical and Environmental Ltd Russel House Suite 2 Mill Road Langley Moor Durham DH7 8HJ
PREPARED BY:			

This report is written for the sole use of MILLER HOMES (NORTH EAST) LTD and their appointed agents. No other third party may rely on or reproduce the contents of this report without the written approval of Sirius. If any unauthorised third party comes into possession of this report, they rely upon it entirely at their own risk and the authors do not owe them any Duty of Care or Skill.

CONTENTS

EXECUTIVE SUMMARY

1. INTRODUCTION. 1
2. SITE DETAILS AND DESCRIPTION. 3
3. ENVIRONMENTAL SETTING 5
3.1. Introduction 5
3.2. Historical Development. 5
3.3. Published Geological Information 6
3.4. Hydrology and Hydrogeology 7
3.5. Landfilling and Waste Management 8
3.6. Radon Risk 9
3.7. Other 9
4. PRELIMINARY CONCEPTUAL SITE MODEL 11
5. FIELDWORK 12
5.1. Scope of Investigation 12
5.2. Strata Description 13
5.3. Exploratory Hole Locations 13
5.4. Geotechnical Testing 15
5.5. Chemical Testing 15
6. GROUND CONDITIONS AND MATERIAL PROPERTIES. 16
6.1. Strata Profile 16
6.2. Material Properties 18
6.3. Groundwater 20
6.4. Visual or Olfactory Evidence of Contamination 20
7. RESULTS OF CHEMICAL TESTING 22
7.1. Assessment Methodology 22
7.2. Soil Analysis 23
7.3. Groundwater Analysis 34
8. REVISED CONCEPTUAL MODEL AND GENERIC QUANTITATIVE RISK ASSESSMENT OF POLLUTANT LINKAGES 37
9. GROUND GAS MONITORING 38
9.1. General 38
9.2. Conceptual Site Model for Gas Risk 38
9.3. Gas Monitoring Strategy and Design 38
9.4. Monitoring Results 39
9.5. Risk Assessment 41
10. CONCLUSIONS AND RECOMMENDATIONS. 42
10.1. General. 42
10.2. Flood Risk 42
10.3. Coal Mining Risk Assessment 42
10.4. Geotechnical 44
10.5. Pavements and Highways 48
10.6. Soil and Groundwater Contamination 49
10.7. Ground Gas/Vapours 52
10.8. Invasive Plants 53
11. REGULATORY APPROVALS 54

TABLES

Table 2.1 Current Site Overview 3
Table 3.1 Geological Summary 6
Table 3.2 Surface Water Features 7
Table 3.3 Groundwater Occurrence and Abstractions 8
Table 3.4 Groundwater Vulnerability Status 8
Table 3.5 Waste Management Activities 8
Table 5.1 Exploratory Hole Rationale 14
Table 6.1 Strata Profile 16
Table 6.2 Summary of Coal Seams Encountered 19
Table 6.3 Summary of Groundwater Encountered 20
Table 6.4 Summary of Visual and Olfactory Evidence of Contamination 20
Table 7.1 Summary of Total Soil Concentrations in Topsoil (including Reworked Topsoil) 24
Table 7.2 Summary of Total Soil Concentrations in Made Ground 27
Table 7.3 Summary of Total Soil Concentrations in Reworked Clay Soils Forming Mounds 31
Table 7.4 Summary of Total Soil Concentrations in Natural Superficial Clay Deposits 33
Table 7.5 Summary of Groundwater Analysis 35
Table 9.1 Summary of Gas Monitoring 40
Table 10.1 Summary of Competent Rock Cover versus Seam Thickness 42

APPENDICES

APPENDIX A FIGURES AND DRAWINGS

Drawing No.	Title	Scale
C7074/01	Site Location Plan	$1: 50,000$
C7074/02	Site Features Plan	$1: 1,000$
C7074/03	Preliminary Conceptual Site Model	NTS
C7074/04	Exploratory Hole location Plan	$1: 1,000$
C7074/05	Revised Conceptual Site Model	NTS
C7074/06	Approximate Likely Zone of Influence - Bottom Hebburn Fell	$1: 1,000$
Pod 544-MIL-100 rev. G	Sketch Site Plan	$1: 500$

Notes: NTS - Not to Scale

APPENDIX B ENVIROCHECK REPORT

APPENDIX C MINING REPORT

APPENDIX D EXPLORATORY HOLE LOGS
APPENDIX E LABORATORY TEST RESULTS
APPENDIX F SIRIUS GENERIC ASSESSMENT CRITERIA

APPENDIX G GAS AND GROUNDWATER MONITORING RESULTS

EXECUTIVE SUMMARY

$\left.\left.\begin{array}{|l|l|}\hline \text { Introduction: } & \begin{array}{l}\text { Sirius Geotechnical and Environmental Ltd was commissioned by Miller } \\ \text { Homes (North East) Ltd to undertake a geoenvironmental appraisal of land } \\ \text { at the Former Siemens Factory, off South Drive in Hebburn, Gateshead, } \\ \text { Tyne and Wear. } \\ \text { It is understood that consideration is being given to redevelopment of the } \\ \text { site for a residential with gardens end use. }\end{array} \\ \hline \text { Site Details: } & \begin{array}{l}\text { The site is located between South Drive and Victoria Road West in Hebburn, } \\ \text { Gateshead, Tyne and Wear, approximately 5km to the east of Newcastle } \\ \text { upon Tyne city centre. The site covers a total area of 10ha. } \\ \text { The majority of the site currently comprises concrete hardstanding, with soft } \\ \text { landscaped mounded areas in the east, south and southeast. }\end{array} \\ \hline \text { Site History: } & \begin{array}{l}\text { The site was agricultural land since the earliest available historical plans, } \\ \text { dated from the 1850s, with only ponds and small buildings present. It was } \\ \text { developed from the 1950s onwards, with an Electrical Appliance Works, } \\ \text { which included railway sidings, tanks, a travelling crane and a reservoir. }\end{array} \\ \hline \text { Fieldwork: } & \begin{array}{l}\text { Excavation of 52 No. trial pits (TPs 101 to 152) to a maximum depth of 4.5m } \\ \text { bgl. } \\ \text { Drilling of five window sample holes (WS 101 to 105) to a maximum depth } \\ \text { of 4m bgl, each completed with a combined gas/groundwater monitoring } \\ \text { well. }\end{array} \\ \begin{array}{l}\text { Drilling of two cable percussion boreholes (BHs 101 and 102) to a maximum } \\ \text { depth of 13.5m bgl. }\end{array} \\ \hline \text { Lrilling of eight rotary boreholes (RO 101, 101A, 102, 103, 103A, 104, 105 } \\ \text { and 106) to a maximum depth of 36m bgl. }\end{array}\left|\begin{array}{l}\text { Programme of ground gas monitoring was undertaken following completion } \\ \text { of fieldwork. }\end{array}\right| \begin{array}{l}\text { Samples of soil were submitted for analysis of a range of metal, other } \\ \text { inorganic and organic components. Selected soil samples were also tested } \\ \text { for the presence of asbestos fibres, PCBs and hydrocarbons. } \\ \text { Groundwater samples were also collected from monitoring wells and } \\ \text { scheduled for analytical testing. } \\ \text { Geotechnical testing was scheduled on selected soil samples. }\end{array} \right\rvert\, \begin{array}{l}\text { All testing was undertaken at MCERTS and UKAS accredited laboratories. }\end{array}\right\}$

[^0]| Proven ground
 conditions: | The site surface comprises concrete hardstanding typically, 0.2 to 0.3m
 thick, across the site centre and toward the north and north east, with rough
 grass over topsoil in the south, east and south east. Mounds of soils up to
 circa 7 m in height are present along much of the eastern boundary and in
 the south-east corner. |
| :--- | :--- |
| | Made Ground has been encountered across the majority of the formerly
 developed areas of the site, typically around 0.4m thick but locally up to
 $>3.9 \mathrm{~m}$ bgl where it has been used to infill subsurface structures and former
 ponds. Numerous relic subsurface structures have been encountered
 including concrete slabs and foundations. |
| The mounds in the east and south east were largely comprised of made | |
| ground of reworked clay with some brick, pottery and concrete fragments. | |
| Underlying the made ground or topsoil was firm and stiff, locally very stiff | |
| Pelaw Clay. | |

Foundations and Floor Slabs:	Conventional strip, deep strip or trench fill foundations are considered possible where made ground is typically <2.5m thick, bearing onto natural soils of suitable bearing capacity.
A significant number of buried subsurface structures have been	
encountered.	
Alternative foundation solutions such as piling or vibro replacement stone	
columns will be required where deeper made ground is present, removal of	
structures/invasive plants disturbs the ground to >2.5m, or where the	
influence of trees dictates. Given that contamination is present in the soils	
beneath the site, alternative foundations through a placed clean capping	
layer could potentially reduce the amount of excavation of contaminated	
arisings required, and lower the risk to groundworkers and adjacent users.	
It is considered that suspended floor slabs will be required across the site.	

1 for concrete only in contact with natural clay soils.\end{array}

\hline $$
\begin{array}{l}\text { Remediation } \\
\text { Options: }\end{array}
$$ \& $$
\begin{array}{l}\text { The investigation has identified potential pollutant linkages to end users and } \\
\text { construction workers from asbestos fibres and elevated concentrations of } \\
\text { heavy metals, diesel range hydrocarbons and PAHs in topsoil and made } \\
\text { ground. } \\
\text { Further analysis of topsoil is recommended, but a significant proportion }\end{array}
$$

should be assumed unsuitable for reuse in near surface garden and

landscaped areas.\end{array}\right|\)| The retaining of the contaminated made ground on site is possible beneath |
| :--- |
| a 1000mm clean cap and geotextile marker layer to protect end users, |
| subject to regulatory approval. A remedial strategy and site materials |
| management plan will be required. |
| Hydrocarbon hotspots will require excavation and either on-site treatment or |
| removal off-site. |

The executive summary given above is an overview of the key findings and conclusions of the report. There may be other information contained within the body of the report which puts into context the findings of the executive summary. No reliance should be placed on the executive summary in isolation.

[^1]
1. INTRODUCTION

Sirius Geotechnical and Environmental Ltd (Sirius) was commissioned by Miller Homes (North East) Ltd (Miller Homes) to undertake a geoenvironmental appraisal of land at the Former Siemens Factory, off South Drive in Hebburn, Gateshead, Tyne and Wear (the "site"). It is understood that the site is to be developed for a residential with gardens end use and with areas of soft landscaping.

A proposed development layout, showing 337 units, has been produced for the site by Pod (Drawing No. 544-MIL-100 rev. G), a copy of which is presented in Appendix A to this report.

The objectives of this appraisal were to:

- Establish the historical development of the site and surrounding area from a review of available plans;
- Establish the environmental setting of the site;
- Investigate near surface soil and groundwater conditions;
- Determine the potential risks posed by any ground contamination and provide recommendations on remedial measures to manage such risks;
- Assess the risks associated with hazardous ground gas;
- Evaluate whether past mining or other extractive industries could have an influence on the site, including the presence of recorded mineshafts;
- Provide advice relating to geotechnical issues associated with the site; and,
- Provide outline foundation recommendations.

As part of this investigation, information from the following sources has been reviewed: Landmark Information Group (LIG) Envirocheck report, the Coal Authority (CA), and the British Geological Survey (BGS).

Fieldwork was undertaken by Sirius from $20^{\text {th }}$ June to $1^{\text {st }}$ July 2016, and comprised the mechanical excavation of 52 trial pits (TPs 101 to 152), the drilling of five window sample holes (WS 101 to 105), the drilling of two cable percussion boreholes (BHs 101 and 102), and the drilling of eight rotary openhole boreholes (RO 101, 101A, 102, 103, 103A, 104, 105 and 106). On completion of the
fieldwork, a programme of ground gas monitoring was subsequently commenced, and is still ongoing at the time of writing.

This report presents the factual information available during this appraisal, interpretation of data obtained from site works, and recommendations relevant to the defined objectives.

It has been assumed in the production of this report that the site is to be developed for a low rise residential with gardens end use. In addition, it is assumed that ground levels will not change significantly from those described in this report. If this is not the case, then amendments to the recommendations made in this report may be required.

Where the report refers to the potential presence of invasive plants (such as Japanese Knotweed) or asbestos-containing materials, such observations are for information only and should be verified by a suitably qualified expert.

The comments and opinions presented in this report are based on the findings of the desk study, ground conditions encountered during intrusive investigation works performed by Sirius, and the results of tests carried out within one or more laboratories. There may be other conditions prevailing on the site which have not been revealed by this investigation and which have not been taken into account by this report. Responsibility cannot be accepted for any conditions not revealed by this investigation. Any diagram or opinion on the possible configuration of strata, contamination or other spatially variable features between or beyond investigation positions is conjectural and given for guidance only. Confirmation of ground conditions between exploratory holes should be undertaken if deemed necessary.

This report has been prepared for the sole use of Miller Homes (North East) Ltd. No other third party may rely upon or reproduce the contents of this report without the written approval of Sirius. If any unauthorised third party comes into possession of this report, they rely on it entirely at their own risk and the authors do not owe them any Duty of Care or Skill.

2. SITE DETAILS AND DESCRIPTION

Table 2.1 Current Site Overview

Location:	The site is located between South Drive and Victoria Road West in Hebburn, Gateshead, Tyne and Wear. The site lies approximately 5 km to the east of Newcastle upon Tyne city centre. A site location plan is included as Drawing No. C7074/01 within Appendix A to this report.
National Grid Reference:	430400,563500 (approximate site centre).
Topography and	The majority of the site is occupied by concrete hardstanding, with soft areas in the east, south and southeast areas of the site. All buildings and above-ground structures have been cleared, although a number of stockpiles of processed demolition rubble are present. Infilled subsurface structures, drainage culverts and markings indicate where structures were historically present. Railway and crane tracks remain in the northeast and southeast of the site. A short asphalt road crosses the centre of the site in an east-west direction. Two large densely vegetated mounds are present in the southeast of the site (to approximately 51m AOD). A grassed bund is present adjacent to the northern boundary of the site, approximately 0.9m in height. A shallow open excavation is present adjacent to the northern boundary of the site near to Parkside (believed to relate to the remediation of a former stand of Japanese Knotweed). Dark oil staining was noted on the concrete hardstanding in the northwest and central southern areas of the site. Suspected fragments of asbestos containing materials (ACMs) were noted in some of the stockpiles of processed demolition rubble.

The main site features are shown on Drawing No. C7074/02 presented in Appendix A to this report.

3. ENVIRONMENTAL SETTING

3.1. Introduction

Published environmental, geological and historical data relating to the site has been reviewed. A summary of relevant information is provided below. A copy of the LIP Envirocheck report is enclosed in Appendix B. A copy of the CA mining report is enclosed in Appendix C.

3.2. Historical Development

A summary of the site history from historical Ordnance Survey maps dated between 1857 and 2016 is presented below. It is not the intention of this report to describe in detail all of the changes that have occurred on or adjacent to the site, only those pertinent to the proposed development.

The earliest historical plans show the site to be open fields, with Whinny Lane crossing the site from northwest to southeast. The 1898/9 plan shows two ponds in the east of the site, a pond in the southeast, a small rectangular building in the east, and two small buildings in the south (one of which is labelled on the 1957 plan as Whinny Cottage). Rises (issuing of groundwater) are indicated on the 1921 plan near to the small rectangular building in the east.

The first industrial development is shown on the 1951 plan in the northern area of the site, expanding during the 1960s and 1970s to include railway sidings and a works in the southwest, and tanks, a travelling crane, and a reservoir in the north. The site is labelled on the 1957 plan as an Electrical Appliance Works, and on later plans as a Works. The 1973 plan show the railways sidings to have been removed. The site remains largely unchanged up until the 2016 edition map when the site is shown to have been cleared of all features.

The historical plans show the surrounding area to be initially open fields, with the railway line constructed along the western boundary by 1898. Hebburn was expanding southwards towards the site in the mid-20 th century, with a works and sports ground developed to the north, and residential dwellings to the east (Hartleyburn Estate). By the 1980s the works to the north had been cleared and later redeveloped with residential dwellings, and the industrial estate developed to the south.

3.3. Published Geological Information

A summary of the available published geological information is presented in Table 3.1.

Table 3.1 Geological Summary

Sources of Information:	BGS 1:10,000 scale geological plan (Sheet NZ 36 SW). BGS Sheet Memoir 20 (England and Wales), Geology of the district around Newcastle upon Tyne, Gateshead and Consett (dated 1988). Coal Mining Authority Reports (ref. 510012016960014, dated 8 ${ }^{\text {th }}$ July 2016).
Made Ground:	No made ground is shown beneath the site. Two spoil heaps are shown in the southeast area of the site.
Drift Geology:	The site is shown to be underlain by superficial glacial deposits noted as Upper (or Pelaw) Clay, described as a red-brown silty clay with some stones.
Solid Geology:	The site is shown to overlie Carboniferous Middle Coal Measures strata, comprising interbedded sequences of mudstone, siltstone, sandstone and coal. The Top Hebburn Fell (THF) coal seam is conjectured to subcrop northwest to southeast across the centre of the site, dipping to the southeast. This seam is recorded to be thin. The Bottom Hebburn Fell (BHF) coal seam, recorded on BGS mapping to be circa 6m below the THF, is conjectured to subcrop west to east across the northern area of the site, dipping to the southeast. This seam is recorded to be between 1.07 and 1.63m thickness, and present in two or three leaves. There is no indication on the BGS mapping of the dip angle of the coal seams beneath the site, but based on the position of the subcrop and recorded separation distance it is likely to be around 3 degrees.
Faults:	A fault is shown trending northwest to southeast outside the site to the southwest and downthrown to the southwest.

A Coal Authority report obtained by Sirius discloses the following information:
"The property is in a surface area that could be affected by underground mining in 4 seams of coal at 210 m to 400 m depth, and last worked in 1947. Any movement in the ground due to coal mining activity should have stopped. In addition, the property is in an area where the CA believe that there is coal at or close to the surface. This coal may have been worked at some time in the past. The potential presence of coal workings at or close to the surface should be considered prior to any site works or future development activity."
"The property is not within a surface area that could be affected by present underground mining."
"The property is not in an area where the CA has plans to grant a licence to remove coal using underground methods."
"The property is not in an area likely to be affected from any planned future underground coal mining. However, reserves of coal exist in the local area which could be worked at some time in the future."

Furthermore, the CA states "there are no known mine entries within, or within 20 metres of, the boundary of the property."

3.4. Hydrology and Hydrogeology

Table 3.2 Surface Water Features

	Presence/Location	Comments
EA GQA Classified Watercourses (within 500m)	None recorded	
Unclassified Watercourses (within 250m)	None known	
Licensed Surface Water Abstractions (within 1000m)	None recorded	Backfilled ponds are suspected to be present on the site from historical mapping.
Surface Water Features (Canals, Pond, Lakes, etc.) (within 250m)	46 m to the southwest.	

Flood Risk Status	The site does not lie within an indicative flood plain	

Table 3.3 Groundwater Occurrence and Abstractions

	Presence/Location	Comments
Licensed Abstractions (within $1000 \mathrm{~m})$	None recorded	
Private Wells (within 1000m)	None recorded	
Source Protection Zones (within $500 \mathrm{~m})$	None recorded	
Known Springs (within 500m)	None recorded	

Table 3.4 Groundwater Vulnerability Status

	Environment Agency Classification
Bedrock Aquifer Designations	Middle Coal Measures is classified as a Secondary 'A' Aquifer
Superficial Aquifer Designations	Pelaw Clay is classified as Unproductive Strata
Groundwater VuInerability	Recorded as soils of high leaching potential

3.5. Landfilling and Waste Management

Table 3.5 Waste Management Activities

	Presence/Location	Comments
Local Authority Landfills (within $1500 \mathrm{~m})$	Three: closest is Pelaw Quarry, 552 m south of the site	

Other Recorded Landfills (within $\mathbf{1 5 0 0 m)}$	Nine historical landfills: losest refers to Hebburn Quayside, 127m northwest of the site	lebburn Quayside listed to accept industrial and household waste.
Other Active Licensed Waste Management Facilities (within 500m)	None recorded	
Evidence of Landfilling On or Within 250m of the Site	Spoil heaps listed on BGS sheet are Backfilled ponds suspected to be present on the site	
Walkover Evidence of Fly-Tipping on the Site	None	
Ground Gas Risk Assessment Required	Yes	Suspected backfilled ponds and Coal Measures strata beneath the site both have the potential to produce hazardous ground gas.

3.6. Radon Risk

To determine whether the site is at risk from radon gas, the BRE Report 211: "Radon: Guidance on the protective measures for new dwellings", dated 2007, has been previously referenced. This document shows the site to be in an area in which no radon protective measures are required.

3.7. Other

An inactive contemporary trade directory entry for the site itself lists Trench (UK) Ltd to be a manufacturer of transformers.

An entry for Registered Radioactive Substances is recorded within the site under the name Nei Reyrolle Ltd, permit reference IPB/3/3/011 dated $7^{\text {th }}$ May 1985, associated with the keeping and use
of mobile radioactive sources. Given it relates to mobile sources and the date of the permit, it is not considered to be significant.

No other potentially contaminative activities or environmental constraints are present within 250m of the site, with the exception of a former petrol filling station 220 m to the south. No Control of Major Accident Hazards (COMAH) facilities are present within 1km of the site.

4. PRELIMINARY CONCEPTUAL SITE MODEL

As part of the Preliminary Geoenvironmental Appraisal, Sirius developed a combined preliminary conceptual site model and conceptual exposure model (PCSM) for the proposed future end use (residential with gardens). This summarises the understanding of surface and sub-surface features, potential contaminant sources, transport pathways and receptors in order to assess potential pollutant linkages.

A qualitative risk assessment has also been made of the likelihood of any complete pollutant linkage and its potential significance.

The preliminary conceptual model for the site is presented in schematic form as Drawing No. C7074/03 in Appendix A to this report.

In summary, the preliminary CSM has identified the following potential pollutant linkages which could present an unacceptable risk to the proposed end-use, denoted as low to moderate or higher likelihood of pollutant linkages on the CSM:

- Direct and indirect ingestion, inhalation and dermal contact with polychlorinated biphenyls (PCBs), petroleum hydrocarbons, oil and solvents, metals, acids and alkalis, and asbestos from historical electrical manufacturing works on the site;
- Direct and indirect ingestion of asbestos fibres present within processed demolition rubble both reused and stockpiled on the site;
- Leaching of above contaminants to controlled waters (Secondary ' A ' Aquifers); and,
- Generation of hazardous ground gases (from former ponds and underlying Coal Measures strata) and accumulation of such gases in enclosed spaces resulting in potential asphyxiation/explosive risks.

5. FIELDWORK

5.1. Scope of Investigation

The information contained in this report is limited to areas of land accessible during the investigation as indicated on Drawing No. C7074/02 presented within Appendix A to this report.

Sirius scoped the intrusive ground investigation using guidance presented in BS 10175:2011+A1 2013, BS 8485:2007, the CLR series of documents (Defra and Environment Agency, 2002a-2002e) and BS EN 1997:2004 and 2007.

The investigation took place from $20^{\text {th }}$ June to $1^{\text {st }}$ July 2016 and comprised the following:

- Excavation of 52 mechanically excavated trial pits (TPs 101 to 152) using a CAT 320DL tracked excavator with a 600 mm toothed bucket to a maximum depth of 4.5 m below ground level (bgl);
- Drilling of five window sample holes (WS 101 to 105) to a maximum depth of 4.0 m bgl , all of which were completed with a combined gas/groundwater monitoring well;
- Drilling of two cable percussion boreholes (BHs 101 and 102) to a maximum depth of 13.5 m bgl; and,
- Drilling of eight rotary openhole boreholes (RO 101 to 106 including RO 101A and RO 103A) to a maximum depth of 36 m bgl, of which four. were completed with a gas monitoring well.

On completion of the fieldwork, a programme of ground gas monitoring was commenced, which is ongoing at the time of writing this report.

Fieldwork was carried out under the full time supervision of a geoenvironmental engineer.

The rotary drilling was initially undertaken using an air flush technique. However, due to the thickness and nature of the overlying natural superficial clay deposits leading to a loss of flush in RO 101, RO101A, 102 and 103, the methodology was changed to an air mist technique for RO 103A, 104, 105 and 106.

5.2. Strata Description

Detailed descriptions of strata and groundwater observations made during investigation works, together with details of samples recovered and in situ testing, are presented on the engineer's exploratory hole records in Appendix D.

Standard strata descriptions are compliant with BS EN ISO 14688:2002 and 2004 and BS EN ISO 14689:2003. The depths of strata on the record sheets are recorded from current ground levels at each location, unless indicated otherwise.

5.3. Exploratory Hole Locations

Within the limitations of safe access, the exploratory hole locations were specified to provide a broad coverage of the site, with more detailed targeted investigations in those areas of particular interest determined from site observations and historical site features, as listed in Table 5.1. General investigation locations were positioned to provide an approximate 40 m grid spacing across the site.

Window sample holes were drilled across the site to gain geotechnical information and allow for the installation of gas monitoring wells.

Cable percussion boreholes were drilled to investigate the two large densely vegetated mounds present in the southeast of the site, specifically the nature of their composition and determine the underlying natural ground conditions.

Rotary boreholes were specifically located to investigate potential shallow unrecorded workings within the Top Hebburn Fell and Bottom Hebburn Fell coal seams. Given the depth to bedrock and difficulties maintaining air flush through the thick superficial deposits only four rotary boreholes were drilled into bedrock.

Table 5.1 Exploratory Hole Rationale

Exploratory Hole Reference	Target
$\begin{aligned} & \text { TPs } 101,102,103,105,117,118,119, \\ & 135,136,137,141,142,143,144,145, \\ & 146,147 \text { and } 149 \end{aligned}$	General site coverage
TPs 108, 109, 110, 111 and 113	Topsoil in southern area
TPs 104, 106, 139, 148	Areas of oil staining on hardstanding
TP 107, 114, 115, 138	Areas of historical ponds
TPs 112, 116, 129, 140	Two large densely vegetated mounds in the southeast
TPs 120, 121, 122, 123 and 124	Stockpile of processed demolition rubble in southwest
TPs 125 and 126	Stockpile of processed demolition rubble
TPs 127 and 128	Stockpile of processed demolition rubble in eastern area
TPs 130, 131 and 132	Stockpile of processed demolition rubble in northern area
TPs 133 and 134	Grassed bund on northern boundary
TP 137	Concrete service duct
TPs 150, 151 and 152	Infilled subsurface structures
WS 101 to 105	General site coverage
BHs 101 and 102	Two large densely vegetated mounds in the southeast
RO 101, 102, 103, 103A, 104, 105 and 106	Potential shallow unrecorded workings within Top Hebburn Fell and Bottom Hebburn Fell coal seams

Procedures and principals recommended in CLR4, BS 10175+A1 2013 and BS EN 1997-2:2007 were followed when determining exploratory hole locations.

Exploratory hole locations are shown on Drawing No. C7074/04 presented in Appendix A of this report.

5.4. Geotechnical Testing

Geotechnical laboratory testing was carried out on selected samples in accordance with techniques outlined in BS 1377:1990 "Methods of Test for Soils for Civil Engineering Purposes" at the laboratory of Professional Soils Laboratory (PSL), a UKAS accredited laboratory.

Geotechnical and geochemical test results are included within Appendix E of this report.

5.5. Chemical Testing

Selected samples of the topsoil, made ground, processed demolition rubble and natural soils were tested for a range of potential contaminants under subcontract with Derwentside Environmental Testing Services (DETS), a UKAS and MCERTS accredited laboratory.

Selected soil samples were subjected to testing for a suite of common analytes including metal, metalloid, organic and inorganics, including asbestos where appropriate. Where visual or olfactory evidence of potential contamination was noted, additional testing was scheduled for hydrocarbons and PCBs.

The results of soil analysis, as received from the laboratory, are presented in Appendix E of this report.

Groundwater samples were also collected during the second round of monitoring on $27^{\text {th }}$ July 2016 from the wells installed within the window sample holes, and tested at DETS for a range of potential contaminants.

Samples of suspected asbestos-containing bituminous and paper materials were sent to Franks Portlock Consulting Ltd for testing for asbestos fibres only.

6. GROUND CONDITIONS AND MATERIAL PROPERTIES

6.1.Strata Profile

A summary of the strata profile is provided in Table 6.1.

Table 6.1 Strata Profile

Strata	Depth Range (Thickness Range)	Description and Comments
Topsoil	$\begin{aligned} & \text { Ground Level } \\ & \text { to } 0.4 \mathrm{~m} \\ & (0.3 \text { to } 0.4 \mathrm{~m}) \end{aligned}$	Topsoil was present in the eastern, southern and southeastern areas of the site, and was generally noted to be a dark brown organic silty clay. Reworked topsoil was also noted to overlie made ground in some areas of the site.
Made Ground	$\begin{aligned} & \text { Ground Level } \\ & \text { to }>3.9 \mathrm{~m} \\ & (0.2 \text { to }>3.9 \mathrm{~m}) \end{aligned}$	Made ground was encountered across the majority of the site, as follows: - In area of suspected historical buildings where processed demolition rubble had been used to infill subsurface structures, to $>3.9 \mathrm{~m}$ bgl. Stockpiles of processed demolition rubble were also present across the site. Beneath existing concrete hardstanding (typically to a maximum thickness of 0.4 m bgl, but locally to $>0.9 \mathrm{~m} \mathrm{bgl}$), granular made ground was recorded comprising a dark grey-brown sandy gravel of brick and concrete. Numerous relic subsurface structures including slabs and foundations were encountered. - Granular made ground in areas of former ponds, comprising a brown sandy gravel of brick and concrete, locally slightly ashy. In TP 107 a horizon of burnt shale was recorded.

Strata	Depth Range (Thickness Range)	Description and Comments
Reworked Clay Soils forming Mounds	$\begin{gathered} \text { Ground Level } \\ \text { to } 8.4 \mathrm{~m} \\ (6.35 \text { to } 8.4 \mathrm{~m}) \end{gathered}$	Two large densely vegetated mounds are present in the southeast of the site. Two boreholes drilled proved locally an upper layer of a firm to stiff dark brown and grey gravelly slightly sandy clay with brick and concrete, overlying a stiff dark brown slightly gravelly clay with isolated brick or pottery fragments.
Pelaw Clay	$\begin{gathered} 0.1 \text { to }>5.5 \mathrm{~m} \\ (>0.7 \text { to }>6.4 \mathrm{~m}) \end{gathered}$	The Pelaw Clay was encountered across the site, immediately below topsoil and made ground. The Pelaw Clay typically comprised a firm and stiff, locally very stiff, slightly gravelly slightly sandy clay; gravel comprised fine to medium angular to subrounded to rounded mixed lithologies including shale, mudstone, siltstone, coal and sandstone.
Middle Coal Measures	$\begin{gathered} 10.0 \text { to } 21.5 \mathrm{~m} \\ (\mathrm{~N} / \mathrm{A}) \end{gathered}$	The rotary boreholes proved bedrock strata to comprise bands of sandstone and mudstone. An intact coal seam, conjectured to be the Top Hebburn Fell seam, was encountered in RO 105 at 22.7 to 23.0 m bgl, and in RO 106 as two thin leaves at 16.5 to 16.7 and 18.3 to 18.4 mbgl . A second intact coal seam, conjectured to be the Bottom Hebburn Fell was encountered in RO 103A as two leaves at 23.0 to 23.1 and 24.2 to 25.3 m bgl, in RO 104 at 29.0 to 29.7 with banded coal/mudstone beneath to 30.7 m bgl , and in RO 105 as two leaves at 30.5 to 30.9 and 31.2 to 32.0 m bgl. No loss of flush, broken/soft ground or voids indicative of possible workings, were recorded in the four rotary boreholes drilled into bedrock.

6.2. Material Properties

Topsoil

Owing to the relatively thin veneer of topsoil across the site, and as topsoil is not considered suitable as a founding material, no geotechnical classification or strength testing was undertaken within that stratum.

Water soluble sulphate concentrations of between 19 and $130 \mathrm{mg} / \mathrm{l}$, together with pH values of between 6.3 and 7.7, have been recorded within the topsoil and reworked topsoil.

Made Ground

The made ground encountered during the investigation was not considered suitable as a founding stratum, and therefore no geotechnical classification testing was undertaken on this material.

Water soluble sulphate concentrations of between <10 and $1500 \mathrm{mg} / \mathrm{l}$, together with pH values of between 8.0 and 12.5, have been recorded within the made ground deposits.

Reworked Clay Soils Forming Mounds

The reworked clay soils used to form the large densely vegetated mounds in the southeast of the site were subject to testing to determine geotechnical parameters for their potential re-use.

Moisture contents measured on eight samples of the reworked clay soils ranged between 19% and 32%. The same eight samples were subject to compaction testing with a 2.5 kg rammer and reported optimum moisture contents of between 16% and 24% at maximum dry densities of between $1.51 \mathrm{Mg} / \mathrm{m}^{3}$ and $1.75 \mathrm{Mg} / \mathrm{m}^{3}$.

CBR testing on five remoulded samples of the reworked clay soils reported values to be between 0.7% and 4.2%.

Natural Superficial Clay (Pelaw Clay)

Soil classification tests were carried out on fourteen samples of the Pelaw Clay deposits. Classification tests show the natural moisture content to range between 18% and 25%, liquid limits range between 40% and 50%, and plastic limits range between 20% and 24%. Modified plasticity indices ranged between 20% and 25%.

Values calculated for consistency index generally ranged between 0.96 and 1.17, which are indicative of generally stiff and very stiff, intermediate plasticity clay.

Calculation of the modified plasticity index, in accordance with NHBC Standards Chapter 4.2, indicates that the clay has a typically medium volume change potential.

In situ hand shear vane values within the Pelaw Clay at depths between 0.8 and 1.8 m bgl ranged between 53 kPa and $>130 \mathrm{kPa}$. These values are typically indicative of medium and high strength soils.

SPTs undertaken within the Pelaw Clay recorded N values between 9 and 45 (mean value of $\mathrm{N}=$ 24). Based on a mean modified plasticity index of 23% for the natural cohesive deposits, a conservative correlation factor of approximately 5 can be derived. Using Stroud's correlation the SPT N values indicate undrained shear strengths of between $45 \mathrm{kN} / \mathrm{m}^{2}$ and $224 \mathrm{kN} / \mathrm{m}^{2}$ within the natural superficial clay deposits, indicating medium to very high strength deposits.

Water soluble sulphate concentrations of between 24 and $240 \mathrm{mg} / \mathrm{l}$, together with pH values of between 7.3 and 9.7 , have been recorded within the natural superficial clay deposits.

Bedrock

Rockhead was encountered at depths of between 10.0 and 21.5 m bgl. As the drilling technique did not enable sampling, no laboratory geotechnical testing was undertaken on this strata.

Intact coal seams were encountered in the four holes drilled into bedrock at depths of between 16.5 and 32.0 m bgl , and recorded to be between 0.1 and 1.1 m in thickness, as summarised in Table 6.2.

Table 6.2 Summary of Coal Seams Encountered

Exploratory Hole	Depth Encountered (m bgl)		
RO 103A	23 to 23.1	24.2 to $25.3{ }^{\text {(BHF) }}$	-
RO 104	29.0 to $29.7{ }^{\text {(BHF) }}$	29.7 to 30.7**(BFF)	-
RO 105	22.7 to $23.0^{\text {(THF) }}$	30.5 to $30.9{ }^{(\text {BHF) }}$	31.2 to $32.0{ }^{\text {(BHF) }}$
RO 106	16.5 to 16.7	18.3 to 18.4	22.5 to 22.6
coal-banded mu BHF - Inferred to be THF - Inferred to b	n Hebburn Fell coal sea ebburn Fell coal seam		

No loss of flush, broken/soft ground or voids, indicative of possible workings, were recorded in any of the four holes drilled into bedrock.

6.3. Groundwater

Groundwater strikes were encountered in a number of the exploratory holes excavated/drilled during the ground investigation, as summarised in Table 6.3.

Table 6.3 Summary of Groundwater Encountered

Exploratory Hole	Depth Encountered $(\mathrm{m}$ bgl)	Description	Stratum
TP 102	0.5	Slight seepage	Interface of granular made ground and clay horizons
TP 106	0.6	Slight seepage	Interface of granular made ground and clay horizons
TP 139	0.4	Slight seepage	Granular made ground
WS 101	1.3	Groundwater strike	Slightly sandy gravelly clay
WS 104	2.0	Groundwater strike	Slightly silty sandy clay
WS 104	3.3	Groundwater strike	Slightly silty slightly gravelly laminated clay

6.4. Visual or Olfactory Evidence of Contamination

A summary of the visual and olfactory evidence of hydrocarbon or similar contamination observed during the fieldwork is presented in Table 6.4.

Table 6.4 Summary of Visual and Olfactory Evidence of Contamination

Exploratory Hole	Depth Encountered $(\mathrm{m}$ bgl)	Description	Stratum
TP 105	0.2 to 0.8	Faint aromatic odour	Granular made ground
TP 106	0.2 to 0.6	Faint hydrocarbon odour	Granular made ground
TP 118	0.9	Hydrocarbon odour and staining	Granular made ground

Exploratory Hole	Depth Encountered (m bol)	Description	Stratum
WP 137	0.7 to 1.1	Hydrocarbon staining and odour	Cohesive made ground
TP 139	0.3 to 0.7	Faint hydrocarbon odour and minor staining	Granular made ground
WS 101	1.8 to 1.9	Hydrocarbon staining	Slightly sandy slightly gravelly clay

7. RESULTS OF CHEMICAL TESTING

7.1. Assessment Methodology

The laboratory test data for the relevant soil strata were reviewed for completeness and consistency. Those determinands that represent potential contaminants of concern were subject to further evaluation.

Where the results of laboratory testing permit, for each soil type and averaging area statistical testing was undertaken for the Planning Scenario by the methods described in CL:AIRE \& CIEH "Guidance on Comparing Soil Contamination Data with a Critical Concentration", May 2008. This statistical testing was undertaken to determine whether there was sufficient evidence that the true mean concentration of each determinand was less than the relevant critical concentration for that component.

Based upon the results of the analytical testing, the use of benzo(a)pyrene as a surrogate marker and statistical analysis of PAH results is considered inappropriate as a significant proportion of reported concentrations were less than the laboratory's limit of detection ($<0.1 \mathrm{mg} / \mathrm{kg}$), and therefore all sixteen PAH compounds have been assessed individually.

Data Below the Analytical Limit of Detection

The proportion of data below the analytical limit of detection ("non-detects") was reviewed for each determinand. The dataset for each site zone (where applicable) was considered separately.

Non-detect data were given a concentration of half of the relevant limit of detection (LoD) for calculation purposes. In cases where a contaminant dataset for a zone consisted of more than 10$15 \%$ of non-detect data, then professional judgement was applied in selecting and applying statistical tests and in interpreting the data.

Assessment of Outliers and Data Distribution

Assessment of data distribution and the identification of statistical outliers was performed iteratively, applying appropriate data distribution and outlier tests for the complete and outlier-censored datasets.

The presence of outliers was determined using Dixon's test working with untransformed values for normally distributed data and natural log-transformed values for non-normally distributed data.

The data were tested for normality by at least two of the following methods:

- Probability histogram.
- Probability ($q-q$) plots.
- Shapiro-Wilk normality test.

Outliers were considered to form part of the overall site dataset except when there was clear evidence and justification for their exclusion.

Calculation of 95\% Upper Confidence Limit of the Sample Mean

Based upon the normality and outlier tests, the 95\% Upper Confidence Limit (US95) of each contaminant of concern was calculated by:

- One-sample t-test for datasets that are normally distributed or close to normal distribution.
- One-sided Chebyshev test for datasets that are significantly non-normal.

The calculated US95s are presented below and compared to the applicable Generic Assessment Criteria.

7.2. Soil Analysis

Results of chemical analysis, as received from the testing laboratory, are presented in full in Appendix E. Measured values were compared to GAC values derived for a "residential with gardens" end use. Source data for all GACs are provided in Appendix F.

Topsoil (including Reworked Topsoil)

The chemical analysis results from thirteen samples of topsoil tested, and the appropriate screening criteria used, are summarised in Table 7.1.

Table 7.1 Summary of Total Soil Concentrations in Topsoil (including Reworked Topsoil)

Determinand	No. of Samples Tested	Range of Results ($\mathrm{mg} / \mathrm{kg}$ unless specified)	US95	$\begin{aligned} & \text { GAC } \\ & (2.5 \% \\ & \text { SOM) } \end{aligned}$	No. of Samples >GAC	Location of Exceedances
Inorganic Arsenic	13	15-41	29.39	37	2	$\begin{aligned} & \text { TP 109, 0-0.3m } \\ & \text { TP 110, 0-0.3m } \end{aligned}$
Cadmium	13	0.3-0.9		11	0	
Chromium (III)	13	20-34		910	0	
Lead	13	100-360	239.6	200	3	TP 109, 0-0.3m TP 110, 0-0.3m TP 114, 0.0-0.25m
Inorganic Mercury	13	0.08-0.68		40	0	
Selenium	13	<0.5-0.5		250	0	
Copper	13	66-150		200	0	
Nickel	13	21-38		180	0	
Zinc	13	110-250		450	0	
pH	13	6.3-8.0		<5	0	
Total Sulphate	13	600-1100		2400	0	
Water Sol. Sulphate	13	0.019-0.13		$0.5 \mathrm{~g} / \mathrm{l}$	0	
Acenaphthene	13	<0.1-0.3		490	0	
Anthracene	13	<0.1-2.3		5300	0	
Acenaphthylene	13	<0.1-0.2		400	0	
Benzo(a)anthracene	13	<0.1-3.0		11	0	
Benzo(b)fluoranthene	13	<0.1-2.1		3.3	0	
Benzo(k)fluoranthene	13	<0.1-1.7		93	0	
Benzo(g,h,i)perylene	13	<0.1-1.5		340	0	
Benzo(a)pyrene	13	<0.1-2.4		2.7	0	
Chrysene	13	<0.1-2.6		22	0	
Dibenzo(a,h)anthracene	13	<0.1-0.4		0.28	1	TP 115, 0-0.25m
Fluoranthene	13	<0.1-7.0		560	0	
Fluorene	13	$<0.1-0.7$		390	0	
Indeno(1,2,3-cd)pyrene	13	<0.1-1.6		36	0	
Naphthalene	13	<0.1		2.3	0	
Pyrene	13	<0.1-5.2		1200	0	
Phenanthrene	13	<0.1-4.4		220	0	
Phenol	13	<0.3-3.2		190	0	

Determinand	No. of Samples Tested	Range of Results ($\mathrm{mg} / \mathrm{kg}$ unless specified)	US95	$\begin{aligned} & \text { GAC } \\ & (2.5 \% \\ & \text { SOM) } \end{aligned}$	No. of Samples >GAC	Location of Exceedances
TOC	13	$2.7-9.9$ w/w\%		$3 \mathrm{w} / \mathrm{w} \%$	12	TP 108, 0-0.4m TP 109, 0-0.3m TP 110, 0-0.3m TP 111, 0-0.3m TP 112, 0-0.2m TP 113, 0-0.3m TP 114, 0.0- $0.25 \mathrm{mTP} 115,0-$ 0.25 m TP 129, 0.1m TP 140, 0-0.3m TP 142, 0-0.15m TP 144, 0-0.15m
Asbestos	12	NAD -Present		Fibres present	2	$\begin{aligned} & \text { TP 116, 0-0.3m } \\ & \text { TP 114, 0.0-0.25m } \end{aligned}$

Notes: Table based on a Residential with Gardens end use
GAC - generic assessment criterion

Metals and Metalloids

Three samples were found to have concentrations of metal or metalloid determinands elevated above the relevant GAC, namely TP 109 at 0 to 0.3 m and TP 110, 0 to 0.3 m (arsenic and lead), and TP114 at 0.0 to 0.25 m (lead) from the southernmost end of the site.

Further statistical analysis of all arsenic and lead concentrations detected within the topsoil suggests that these sample results are within a normal distribution with no outliers. This further analysis has confirmed a US95 for arsenic and lead within the topsoil, of $29.36 \mathrm{mg} / \mathrm{kg}$ and $239.6 \mathrm{mg} / \mathrm{kg}$, respectively. The US95 for arsenic is less than the GAC, but the US95 for lead exceeds the GAC.

Consequently, the presence of lead in the topsoil is considered to present a potential risk to human health.

Other Inorganic Analytes

No concentrations of inorganic determinands exceeded the relevant GAC.

Organics

Twelve of the samples of topsoil tested returned concentrations of TOC above the respective GAC. TOC is a measure of organic carbon within the material and is therefore not a determinand which directly poses a risk to human health. These results are used to determine the classification of material for removal from site to a licensed disposal facility. The TOC is also used to derive the
relevant SOM for the soils, necessary to derive an appropriate GAC for other parameters sensitive to organic matters.

One sample of reworked topsoil (from TP 115, 0 to 0.25 m), excavated in the area of a historical pond, returned an elevated concentration of PAHs (specifically dibenzo(a,h)anthracene at $0.4 \mathrm{mg} / \mathrm{kg}$) exceeding the relevant GAC.

Asbestos

Twelve samples of topsoil were tested for the presence of asbestos fibres, of which two have proved to be positive (TP114 0 to 0.25 and TP 116, 0 to 0.3 m), described as "chrysotile present as small clump and fibre bundles" within reworked topsoil on top of the mounds. Quantification of these positive identification proved fibres to be present at 0.006 and 0.008%, respectively.

Made Ground

The chemical analysis results from sixteen samples of made ground tested, (excluding reworked topsoil, processed demolition rubble and reworked clay forming the mounds), and the appropriate screening criteria used, are summarised in Table 7.2.

Table 7.2 Summary of Total Soil Concentrations in Made Ground

Determinand	No. of Samples Tested	Range of Results (mg/kg unless specified)	US95	$\begin{gathered} \text { GAC } \\ (2.5 \% \text { SOM }) \end{gathered}$	No. of Samples >GAC	Exceedances
Inorganic Arsenic	16	$3.7-51$	16.05	37	1	TP 143, 0.4-0.7m (outlier)
Cadmium	16	0.1-1.7		11	0	
Chromium (III)	16	11-130		910	0	
Lead	16	$17-330$	135	200	2	$\begin{aligned} & \text { TP 119, 0.2-0.5m } \\ & \text { (outlier) } \\ & \text { TP 143, 0.4-0.7m } \\ & \text { (outlier) } \end{aligned}$
Inorganic Mercury	16	$\begin{gathered} <0.05- \\ 0.39 \end{gathered}$		40	0	
Selenium	16	<0.5-0.6		250	0	
Copper	16	14-350	101.2	200	1	TP 118, 0.9-1.3m (outlier)
Nickel	16	8.1-30		180	0	
Zinc	16	53-480	244.3	450	1	TP 138, 0.4m (outlier)
pH	16	8.0-12.5		<5	0	
Total Sulphate	16	300-9100		2400	11	TP 101, 0.5-1.0m TP 103, 3.0m TP 105, 0.2-0.8m TP 106, 0.2-0.6m TP 119, 0.2-0.5m TP 138, 0.4m TP 139, 0.5m TP 141, 0.4m TP 143, 0.4-0.7m TP 145, 0.25- 0.6m TP 147, 0.4-0.6m
Water Sol. Sulphate	16	<0.01-1.5		$0.5 \mathrm{~g} / \mathrm{l}$	4	TP 103, 3.0m TP 106, 0.2-0.6m TP 119, 0.2-0.5m TP 143, 0.4-0.7m
Acenaphthene	16	<0.1-1.2		490	0	
Anthracene	16	<0.1-5.7		5300	0	
Acenaphthylene	16	<0.1-2.0		400	0	
Benzo(a)anthracene	16	$<0.1-17$		11	1	TP 101, 0.5-1.0m
Benzo(b)fluoranthene	16	<0.1-11		3.3	1	TP 101, 0.5-1.0m
Benzo(k)fluoranthene	16	<0.1-6.4		93	0	
Benzo(g,h,i)perylene	16	$<0.1-6.1$		340	0	
Benzo(a)pyrene	16	<0.1-11		2.7	1	TP 101, 0.5-1.0m
Chrysene	16	$<0.1-17$		22	0	
Dibenzo(a,h)anthracene	16	<0.1-1.9		0.28	1	TP 101, 0.5-1.0m
Fluoranthene	16	<0.1-36		560	0	

Determinand	No. of Samples Tested	Range of Results (mg/kg unless specified)	US95	$\begin{gathered} \text { GAC } \\ (2.5 \% \text { SOM }) \end{gathered}$	No. of Samples >GAC	Exceedances
Fluorene	16	<0.1-2.1		390	0	
Indeno(1,2,3-cd)pyrene	16	<0.1-7.6		36	0	
Naphthalene	16	$<0.1-0.5$		2.3	0	
Pyrene	16	<0.1-25		1200	0	
Phenanthrene	16	<0.1-17		220	0	
Aliphatic C5-C6	7	<0.01		41	0	
Aliphatic C6-C8	7	$\begin{gathered} <0.01- \\ 0.79 \end{gathered}$		110	0	
Aliphatic C8-C10	7	<0.01-5.6		31	0	
Aliphatic C10-C12	7	<1.5-130		150	0	
Aliphatic C12-C16	7	<1.2-620		1200	0	
Aliphatic C16-C35	7	70-4200		70,000	0	
Aromatic C5-C7	7	<0.01		110	0	
Aromatic C7-C8	7	$\begin{gathered} <0.01- \\ 0.14 \end{gathered}$		240	0	
Aromatic C8-C10	7	<0.01-12		48	0	
Aromatic C10-C12	7	<0.9-110		150	0	
Aromatic C12-C16	7	3.9-480		320	1	TP 137, 0.9m
Aromatic C16-C21	7	27-1200		540	3	$\begin{aligned} & \text { TP 105, 0.2-0.8m } \\ & \text { TP 137, 0.9m } \\ & \text { TP 139, 0.5m } \end{aligned}$
Aromatic C21-C35	7	25-950		1500	0	
Phenol	16	<0.3-1.0		190	0	
TOC	16	$\begin{gathered} 0.4-4.8 \\ \mathrm{w} / \mathrm{w} \% \end{gathered}$		$3 \mathrm{w} / \mathrm{w} \%$	1	TP 106, 0.2-0.6m
Asbestos	14	NAD Present		Fibres present	4	$\begin{aligned} & \text { TP } 1010.5-1.0 \mathrm{~m} \\ & \text { TP104A 0-0.5m } \\ & \text { TP 115, 0.25- } \\ & 1.0 \mathrm{~m} \\ & \text { TP150 0-0.5m } \end{aligned}$

Notes: Table based on a Residential with Gardens end use
GAC - generic assessment criterion

Metals and Metalloids

Concentrations of metal or metalloid determinands exceeded the relevant GAC in four samples of made ground tested. These being TP118 at 0.9 to 1.3 m (copper), TP119 0.2 to 0.5 m (lead), TP138 0.4 m (zinc) and TP143 0.4 to 0.7 m (arsenic, lead).

Further statistical analysis of all concentrations of heavy metals which exceed the GAC within the made ground suggests that these elevated samples comprise statistical outliers i.e. 'hotspot' within the dataset, although all calculated US95 values fall below the GAC with or without the outliers.

Notwithstanding this analysis, it is not considered possible, based on visual assessment or geographical location, to physically identify and therefore readily separate the made ground containing the 'hotspots', and the presence of other similar, unidentified elevated 'hotspots' within the made ground cannot be discounted.

Consequently, the presence of sporadic elevated concentrations of heavy metals within the made ground are considered to present a significant potential risk to human health.

Other Inorganic Analytes

Elevated concentrations of total sulphate exceeded the GAC in eleven of the seventeen samples of made ground tested. Water soluble sulphate was elevated in four samples tested.

Organics

One of the samples of made ground tested returned concentrations of TOC above the respective GAC. TOC is a measure of organic carbon within the material and is therefore not a determinand which directly poses a risk to human health. These results are used to determine the classification of material for removal from site to a licensed disposal facility. The TOC is also used to derive the relevant SOM for the soils, necessary to derive an appropriate GAC for other parameters sensitive to organic matters.

One sample of made ground (from TP 101, 0.5 to 1.0 m) returned elevated concentrations of PAHs (specifically benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(a, h)anthracene) exceeding the relevant GAC.

Elevated concentrations of hydrocarbons were reported in three samples of made ground (in TP $105,0.2$ to 0.8 m , TP $137,0.9 \mathrm{~m}$ and TP $139,0.5 \mathrm{~m}$) where visual or olfactory evidence of hydrocarbon contamination had been noted.

PCBs
Four samples of made ground were tested for PCBs (Euro 7 congeners), with reported individual concentrations ranging between <0.01 and $0.38 \mathrm{mg} / \mathrm{kg}$ (PCB 138 - TP105 0.2 to 0.8 m) and total PCBs up to 1.1 m

The detected PCB concentrations have been assessed following the approach outlined in Environment Agency Science Report SC050021 / Dioxins SGV. Using the exposure factor and toxicity equivalence factor for PCB 118 as representative of the PCBs detected and based on a residential land use scenario, a hazard index of 0.4 is calculated for the maximum concentration of
total PCBs ($1.1 \mathrm{mg} / \mathrm{kg}$) detected in TP105 between 0.2 and 0.8 m . A hazard index of less than 1.0 indicates that potential exposure falls below the tolerable daily soil intake and no unacceptable risk to future end users is present. Notwithstanding the low level of risk identified, given the presence of other contaminants, these soils will be subject to a physical capping layer which will prevent future end users being exposed to the material. Table 6 of the EA Science Report confirms that the vapour exposure pathway is insignificant for these compounds.

Asbestos

Fourteen samples of made ground were subject to asbestos testing. The results of the testing proved asbestos fibres to be present in four of the samples tested, typically described as small fibre bundles of chrysotile and occasionally of amosite. Quantification testing undertaken on two of these samples proved fibres to be present at 0.001% (TP 101, 0.5 to 1.0 m) and 0.057% (TP 104A, 0.0 to 1.0 m).

Processed Demolition Rubble

Fourteen samples of processed demolition rubble, either reused to infill relic structures, or stockpiled, were sampled and scheduled for asbestos testing only.

The results of the testing proved asbestos fibres to be present in seven of the samples tested, typically described as small bundles of chrysotile, amosite and crocidolite. Quantification testing undertaken on four of these samples identified no asbestos quantities above the laboratory's detection limit.

Four samples of suspected asbestos-containing bituminous and paper materials observed within the stockpiles of processed demolition rubble were sent to Franks Portlock Consulting Ltd for testing for asbestos fibres. The results of the testing proved no asbestos to be detected.

Reworked Clay Soils Forming Mounds

The chemical analysis results from five samples of reworked clay forming the mounds in the southeast corner of the site, and the appropriate screening criteria used, are summarised in Table 7.3.

Table 7.3 Summary of Total Soil Concentrations in Reworked Clay Soils Forming Mounds

Determinand	No. of Samples Tested	Range of Results (mg/kg unless specified)	$\begin{gathered} \text { GAC } \\ (1 \% \text { SOM }) \end{gathered}$	No. of Samples >GAC	Exceedances
Inorganic Arsenic	5	7.2-13	37	0	
Cadmium	5	0.1-0.2	11	0	
Chromium (III)	5	25-31	910	0	
Lead	5	28-78	200	0	
Inorganic Mercury	5	$\begin{gathered} <0.05- \\ 0.08 \end{gathered}$	40	0	
Selenium	5	<0.5	250	0	
Copper	5	28-72	200	0	
Nickel	5	29-38	180	0	
Zinc	5	60-110	450	0	
pH	5	8.0-9.5	<5	0	
Total Sulphate	5	400-600	2400	0	
Water Sol. Sulphate	5	$\begin{gathered} 0.022- \\ 0.17 \\ \hline \end{gathered}$	$0.5 \mathrm{~g} / \mathrm{l}$	0	
Acenaphthene	5	<0.1	200	0	
Anthracene	5	<0.1	2300	0	
Acenaphthylene	5	<0.1	170	0	
Benzo(a)anthracene	5	<0.1	7.5	0	
Benzo(b)fluoranthene	5	<0.1	2.6	0	
Benzo(k)fluoranthene	5	<0.1	77	0	
Benzo(g,h,i)perylene	5	<0.1	320	0	
Benzo(a)pyrene	5	<0.1	2.2	0	
Chrysene	5	<0.1	15	0	
Dibenzo(a,h)anthracene	5	<0.1	0.24	0	
Fluoranthene	5	<0.1-0.9	280	0	
Fluorene	5	<0.1	170	0	
Indeno(1,2,3-cd)pyrene	5	<0.1	27	0	
Naphthalene	5	<0.1	1.0	0	
Pyrene	5	<0.1-0.7	620	0	
Phenanthrene	5	<0.1	95	0	
Phenol	5	<0.3-0.6	110	0	
TOC	5	$\begin{gathered} 1.1-1.7 \\ \mathrm{w} / \mathrm{w} \% \end{gathered}$	$3 \mathrm{w} / \mathrm{w} \%$	0	
Asbestos	3	NAD	Fibres present	0	

Notes: Table based on a Residential with Gardens end use
GAC - generic assessment criterion

Metals and Metalloids

No concentrations of metal or metalloid determinands exceeded the relevant GAC in the five samples tested of reworked clay forming the mounds.

Other Inorganic Analytes

No concentrations of inorganic determinands exceeded the relevant GAC in the five samples tested of reworked clay forming the mounds.

Organics

No concentrations of organic determinands exceeded the relevant GAC in the five samples tested of reworked clay forming the mounds.

Asbestos

Three samples of reworked clay forming the mounds were tested for the presence of asbestos fibres, none of which proved to contain fibres.

Natural Superficial Clay (Pelaw Clay)

The chemical analysis results from five samples of natural superficial clay deposits tested, and the appropriate screening criteria used, are summarised in Table 7.4.

Table 7.4 Summary of Total Soil Concentrations in Natural Superficial Clay Deposits

Determinand	No. of Samples Tested	Range of Results (mg/kg unless specified)	$\begin{gathered} \text { GAC } \\ (1 \% \text { SOM }) \end{gathered}$	No. of Samples >GAC	Exceedances
Inorganic Arsenic	5	6.9-9	37	0	
Cadmium	5	$<0.1-0.2$	11	0	
Chromium (III)	5	27-36	910	0	
Lead	5	16-32	200	0	
Inorganic Mercury	5	<0.05	40	0	
Selenium	5	<0.5	250	0	
Copper	5	21-30	200	0	
Nickel	5	32-47	180	0	
Zinc	5	51-71	450	0	
pH	5	8.0-9.7	<5	0	
Total Sulphate	5	200-2200	2400	0	
Water Sol. Sulphate	5	$\begin{gathered} 0.027- \\ 0.24 \end{gathered}$	$0.5 \mathrm{~g} / \mathrm{l}$	0	
Acenaphthene	5	<0.1	200	0	
Anthracene	5	<0.1	2300	0	
Acenaphthylene	5	<0.1	170	0	
Benzo(a)anthracene	5	<0.1	7.5	0	
Benzo(b)fluoranthene	5	<0.1	2.6	0	
Benzo(k)fluoranthene	5	<0.1	77	0	
Benzo(g,h,i)perylene	5	<0.1	320	0	
Benzo(a)pyrene	5	<0.1	2.2	0	
Chrysene	5	<0.1	15	0	
Dibenzo(a,h)anthracene	5	<0.1	0.24	0	
Fluoranthene	5	<0.1	280	0	
Fluorene	5	<0.1	170	0	
Indeno(1,2,3-cd)pyrene	5	<0.1	27	0	
Naphthalene	5	<0.1	1.0	0	
Pyrene	5	<0.1	620	0	
Phenanthrene	5	<0.1	95	0	
Aliphatic C5-C6	5	<0.01	24	0	
Aliphatic C6-C8	5	<0.01	53	0	
Aliphatic C8-C10	5	$\begin{gathered} \hline<0.01- \\ 0.58 \end{gathered}$	13	0	
Aliphatic C10-C12	5	<1.5-120	62	1	TP 137, 1.3m
Aliphatic C12-C16	5	<1.2-600	510	1	TP 137, 1.3m
Aliphatic C16-C35	5	<4.9-3300	41000	0	
Aromatic C5-C7	5	<0.01	53	0	
Aromatic C7-C8	5	<0.01	100	0	
Aromatic C8-C10	5	$\begin{gathered} <0.01- \\ 0.36 \end{gathered}$	20	0	

Determinand	No. of Samples Tested	Range of Results (mg/kg unless specified)	GAC $(1 \%$ SOM)	No. of Samples $>$ GAC	Exceedances
Aromatic C10-C12	5	$<0.09-100$	63	1	TP 137, 1.3m
Aromatic C12-C16	5	$<0.5-470$	140	1	TP 137, 1.3m
Aromatic C16-C21	5	$<0.6-$ 1200	260	1	TP 137, 1.3m
Aromatic C21-C35	5	$<1.4-810$	1100	0	
Phenol	5	<0.3	110	0	
TOC	5	$0.9-1.1$ $\mathrm{w} / \mathrm{w} \%$	$3 \mathrm{w} / \mathrm{w} \%$	0	

Notes: | Table based on a Residential with Gardens end use |
| :--- |
| GAC - generic assessment criterion |

Metals and Metalloids

No concentrations of metal or metalloid determinands exceeded the relevant GAC in the five samples of natural superficial deposits tested.

Other Inorganic Analytes

No concentrations of inorganic determinands exceeded the relevant GAC in the five samples of natural superficial deposits tested.

Organics

No concentrations of organic determinands exceeded the relevant GAC in the five samples of natural superficial deposits tested, with the exception of hydrocarbons in one sample from TP 137. This trial pit was excavated adjacent to a concrete service duct in which hydrocarbon staining and associated odour were noted in the overlying made ground.

7.3. Groundwater Analysis

One round of groundwater sampling from the monitoring wells installed in WS 101 to 105 was undertaken on $27^{\text {th }}$ July 2016, with the results evaluated against GAC values appropriate to the conceptual model for the site, with cognisance to the presence of an underlying Secondary ' A ' Aquifer and nearby surface water features.

The results of analysis have been compared to UK DWS and EQS Levels. Where two assessment criteria are present, the lowest has been used for the purposes of the tier 1 assessment. For freshwater EQS values that are dependent upon the hardness of the receiving water, assessment
has been undertaken based on the reported mean groundwater analytical hardness of $77.6 \mathrm{mg} / \mathrm{l}$ CaCO_{3}.

Further information on the derivation of the GAC values is given in Appendix F. The analytical results are presented in full in Appendix E.

The results of the groundwater analyses and the outcome of screening are summarised in Table 7.5.
Table 7.5 Summary of Groundwater Analysis

Determinand	No. of Samples Tested	No. Samples Above Limit of Detection	Range of Results ($\mu \mathrm{g} / \mathrm{I}$ unless specified)	GAC ($\mu \mathrm{g} / \mathrm{l}$ unless specified)		No. of Samples >GAC
				EQS	DWS	
Metals						
Arsenic	5	5	0.62-1.5	50	10	0
Cadmium	5	3	<0.03-0.27	$0.25{ }^{+}$	5	1
Chromium	5	4	$<0.25-11$	4.7	50	1
Lead	5	4	<0.09-3.4	1.2 (bio)	10	1
Mercury	5	0	<0.01	0.07	1	0
Copper	5	5	1-5.9	1 (bio)	2000	4
Nickel	5	5	2.2-6.4	4 (bio)	20	2
Zinc	5	5	1.9-190	10.9 (bio)	5000	3
Inorganics						
Sulphate	5	5	$130-760 \mathrm{mg} / \mathrm{l}$	400mg/l	250mg/l	3
Ammonia (as N)	5	0	$<0.015 \mathrm{mg} / \mathrm{l}$	$0.6 \mathrm{mg} / \mathrm{l}^{+}$	N/A	0
Organics						
Anthracene	5	0	<0.01	0.1	N/A	0
Benzo(a)pyrene	5	0	<0.01	0.00017	0.01	0
Sum of benzo(b)fluoranthene benzo(k)fluoranthene	5	0	<0.02	N/A	N/A	-
Sum of benzo(ghi)perylene + indeno(1,2,3cd)pyrene	5	0	<0.02*	N/A	N/A	-
Sum of four PAHs benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene + indeno(1,2,3cd)pyrene	5	0	<0.04	N/A	0.1	0
Fluoranthene	5	0	<0.01	0.0063	N/A	0
Naphthalene	5	0	<0.01	2.0	N/A	0
Phenol	5	0	<0.5	7.7	0.5	0

Notes: + EQS is hardness related.

* Laboratory detection limits are higher than EQS value.
${ }^{B i o}$ EQS is related to the receiving surface water course. N/A - Not applicable.

Metals and Metalloids

The laboratory testing of the five groundwater samples tested proved elevated dissolved concentrations, as compared to the relevant GAC, of copper in four samples, zinc in three samples, nickel in two samples and cadmium, chromium and lead in one sample. However, whilst the EQS GAC for these metals were slightly exceeded, all were below the DWS GAC. Considering the very low concentrations and the site setting these contaminants are not considered significant and discussed no further.

Other Inorganic Analytes

Three samples of groundwater reported elevated dissolved concentrations of sulphates in excess of the relevant GAC. No elevated concentrations of ammonia were recorded.

Organics

The relevant GAC for the sum of the two PAHs, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene, is lower than the LoD of the laboratory analysis. However, as all concentrations of both determinands are below the limit of detection in all samples, it is assumed that it is unlikely that dissolved concentrations of benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene will exceed the GAC.

No elevated concentrations of phenol were recorded.

8. REVISED CONCEPTUAL MODEL AND GENERIC QUANTITATIVE RISK ASSESSMENT OF POLLUTANT LINKAGES

The preliminary combined conceptual site model and conceptual exposure model, as discussed in Section 4, has been revised in light of the ground investigation and the chemical analysis results presented above.

The revised conceptual model has been developed for the proposed future land use (residential with gardens). This summarises the understanding of surface and sub-surface features, the potential contaminant sources, transport pathways and receptors.

The revised conceptual model is presented in schematic form as Drawing No. C7074/05 in Appendix A to this report. In summary, the revised CSM has identified the following residual contaminant linkages that could result in a potentially unacceptable risk (designated as greater than 'low') in the proposed end-use, if unmitigated:

- Inhalation by future site users and construction workers of asbestos fibres released from dispersed fibres within the reworked topsoil, made ground and processed demolition rubble;
- Inhalation, ingestion and dermal contact with metal and PAH contamination within isolated hotspots of reworked topsoil, and made ground, by end users and construction workers; and,
- Migration of hydrocarbons from isolated hotspots of made ground, and where impacted, underlying clay deposits.

The results of this investigation have proven areas of contamination which present a potential risk to end users and construction workers, however, these can be mitigated by the designing of remedial measures into the proposed earthworks.

9. GROUND GAS MONITORING

9.1. General

Ground gas monitoring has been carried out on three occasions to date in August 2016. Based upon the results of this monitoring undertaken to date, a generic quantitative gas risk assessment has been prepared in accordance CIRIA Document C665, 2007, "Assessing Risks posed by Hazardous Ground Gases to Buildings", and with cognisance to the British Standards BS 8576:2013 and BS 8485:2015.

In preparing this risk assessment, it is understood that the development will comprise low rise residential properties, utilising ground bearing floor slabs. For the purposes of this gas risk assessment, the proposed development is therefore considered to be characterised as a 'Type A' building as defined in Table 3 of BS 8485:2015.

9.2. Conceptual Site Model for Gas Risk

Based upon the characterisation of the site, the potential pathways for the migration of potential hazardous ground gas identified by the conceptual site model (CSM) are considered to be:
i. Localised pockets of made ground on the site. Based upon the results of the investigation, the risk of significant gas generation from the made ground is considered to be low based upon the negligible quantities of biodegradable matter identified;
ii. Coal Measures strata underlying the site which have the potential to produce hazardous ground gas; and,
iii. Former ponds present on the site.

9.3. Gas Monitoring Strategy and Design

On the basis of the CSM, a low 'generation potential of source' (from localised pockets of made ground, Coal Measures strata, and former ponds) and a high sensitivity end use (residential development) was assumed for the site when determining the duration of monitoring required. A programme of six monitoring visits over a three month period was considered appropriate in accordance with Tables 5.5a and 5.5b of CIRIA report C665.

Nine monitoring wells were installed across the site to achieve a general site coverage, with the response zone installed within the natural superficial clay deposits. The well designs are therefore considered to target the pathways identified in the CSM.

The gas monitoring was undertaken in accordance with the guidance given in CIRIA Report 151 'Interpreting Measurements of Gas in the Ground', CIRIA C655 and BS 8485.

9.4. Monitoring Results

All eleven wells have been monitored on three occasions to date in August 2016. However, based on the CSM, the low risk scenario and design of the gas wells, it is considered that there is sufficient information available to allow preliminary conclusions to be drawn.

The three monitoring visits to date have been undertaken at barometric pressures between 1007 and 1018mbar, and during periods of rising barometric pressure.

Copies of the records from the three gas monitoring visits to date are presented in Appendix G to this report. Table 11.1 summarises the gas monitoring results from the three visits to date.

Table 9.1 Summary of Gas Monitoring

Well	Concentration Ranges (\%v/v)			Concentration Ranges (ppm)		Flow Rate Ranges (l/hr)		Range of Groundwater Levels (m bgl)
	Methane (Peak)	Carbon Dioxide (Steady State)	Oxygen (Minimum Detected Range)	Hydrogen Sulphide (Maximum Detected Range)	Carbon Monoxide (Maximum Detected Range)	Peak Flow Rate	Steady State Flow Rate	
$\begin{aligned} & \hline \text { WS } \\ & 101 \end{aligned}$	ND	ND to 0.2	$\begin{gathered} 20.3 \text { to } \\ 20.7 \end{gathered}$	ND	ND	ND	ND	1.74 to 1.75
$\begin{aligned} & \hline \text { WS } \\ & 102 \end{aligned}$	ND	ND	$\begin{gathered} 17.14 \text { to } \\ 18.8 \end{gathered}$	ND	ND	$\begin{gathered} 63.7 \text { to } \\ 74.6 \end{gathered}$	$\begin{gathered} \hline \text { ND to } \\ 0.1 \end{gathered}$	0.64 to 0.78
$\begin{aligned} & \hline \text { WS } \\ & 103 \end{aligned}$	ND	$\begin{gathered} \hline 0.7 \text { to } \\ 2.1 \end{gathered}$	$\begin{gathered} 18.8 \text { to } \\ 19.9 \end{gathered}$	ND	ND	ND	ND	3.19 to 3.63
$\begin{aligned} & \text { WS } \\ & 104 \end{aligned}$	ND	ND to 1.0	$\begin{gathered} 20.1 \text { to } \\ 20.6 \end{gathered}$	ND	ND	ND	ND	1.10 to 1.26
$\begin{aligned} & \text { WS } \\ & 105 \end{aligned}$	ND	$\begin{gathered} 0.9 \text { to } \\ 1.0 \end{gathered}$	$\begin{gathered} 19.8 \text { to } \\ 20.0 \end{gathered}$	ND	ND	ND	ND	3.52 to 3.95
$\begin{gathered} \mathrm{RO} \\ 103 \mathrm{~A} \end{gathered}$	ND	$\begin{gathered} 1.0 \text { to } \\ 1.3 \end{gathered}$	$\begin{aligned} & 9.4 \text { to } \\ & 20.1 \end{aligned}$	ND	ND	$\begin{gathered} -34.4 \\ \text { to }-3.1 \end{gathered}$	ND	2.37 to 2.47
$\begin{aligned} & \hline \mathrm{RO} \\ & 104 \end{aligned}$	ND to 0.2	$\begin{gathered} 3.7 \text { to } \\ 7.2 \end{gathered}$	2.1 to 5.1	ND	ND	ND	ND	3.87 to 4.07
$\begin{aligned} & \mathrm{RO} \\ & 105 \end{aligned}$	ND	$\begin{gathered} 2.7 \text { to } \\ 5.5 \end{gathered}$	$\begin{gathered} \hline-0.4 \text { to } \\ 9.7 \end{gathered}$	ND	ND	$\begin{gathered} -51.9 \\ \text { to } \\ 119.7 \end{gathered}$	ND	4.32 to 4.73
$\begin{aligned} & \mathrm{RO} \\ & 106 \end{aligned}$	ND	$\begin{gathered} 1.5 \text { to } \\ 2.3 \end{gathered}$	$\begin{gathered} 17.5 \text { to } \\ 18.7 \end{gathered}$	ND	ND	ND	ND	DRY

Notes: ND - Not Detected

A maximum peak methane concentration of $0.2 \% \mathrm{v} / \mathrm{v}$ was detected within RO104 on the first visit. Concentrations of methane in the wells during the remaining visits were all less than $0.1 \% \mathrm{v} / \mathrm{v}$.

A maximum steady state concentration of carbon dioxide of $7.2 \% \mathrm{v} / \mathrm{v}$ was detected within RO104 on the third visit. This well was located in the west of the site. Elsewhere, elevated concentrations of
carbon dioxide exceeding $5 \% \mathrm{v} / \mathrm{v}$ were also detected in RO105 (maximum of $5.5 .0 \% \mathrm{v} / \mathrm{v}$). Lower concentrations of carbon dioxide have also been recorded within the remaining holes throughout the monitoring period.

Depleted concentrations of oxygen below $15 \% \mathrm{v} / \mathrm{v}$ were recorded on occasions in RO103A (minimum of $7.2 \% \mathrm{v} / \mathrm{v}$), RO104 (minimum of $2.1 \% \mathrm{v} / \mathrm{v}$) and RO105 (minimum of $-0.4 \% \mathrm{v} / \mathrm{v}$).

No detectable concentrations of hydrogen sulphide or carbon monoxide were recorded within any of the monitoring wells, on any monitoring occasion.

A maximum positive steady state gas flow rate of $0.11 / \mathrm{hr}$ was recorded within WS102 on two occasions

9.5. Risk Assessment

On the basis of the above, a Gas Screening Value (GSV) has been derived for methane using a maximum recorded concentration of 0.2% and a maximum recorded steady flow rate of $0.11 / \mathrm{hr}$. A worst case GSV of $0.0002 / / \mathrm{hr}$ has therefore been derived for methane.

A Gas Screening Value (GSV) has been derived for carbon dioxide using a maximum recorded steady state concentration of $7.2 \% \mathrm{v} / \mathrm{v}$, recorded in RO104 located in the central western part of the site, and a maximum recorded steady state flow rate of $0.11 / h r$. A worst case GSV of $0.00721 / \mathrm{hr}$ has therefore been derived for carbon dioxide in this well only.

At this stage, on the basis of both the above GSVs, together with the maximum detected concentrations of methane and carbon dioxide, and the recorded flow rates which are considered to be representative of the ground gas conditions, the site considered to fall within the modified Wilson and Card classification Characteristic Situation 2 (CS2), as defined in Table 8.5 of CIRIA C665 and in Table 2 of BS 8485.

10. CONCLUSIONS AND RECOMMENDATIONS

10.1. General

This geoenvironmental appraisal has been performed for land at the Former Siemens Factory, off South Drive in Hebburn, Gateshead, Tyne and Wear.

It has been assumed in the production of this report that the site is to be developed for a residential with gardens end use. In addition, it has been assumed that ground levels will not change significantly from those described in this report. If this is not the case, then amendments to the interpretation and conclusions in this report may be required.

10.2. Flood Risk

The site is not recorded by the Environment Agency to lie within an indicative flood plain.

10.3. Coal Mining Risk Assessment

Based on published geological mapping and information contained within the CA mining report, it was considered that there was a risk to the site from possible unrecorded workings in the Top Hebburn Fell and Bottom Hebburn Fell coal seams.

Rotary openhole drilling, undertaken as part of this investigation, has proven intact coal seams to be present in all four boreholes drilled into bedrock, as summarised in Table 10.1. No loss of flush, broken/soft ground, or voids indicative of possible workings were recorded in the rotary boreholes drilled. However, solid coal seams of workable thickness were encountered and a summary of the relevant stratigraphic data, is presented in Table 10.1.

Table 10.1 Summary of Competent Rock Cover versus Seam Thickness

Borehole	Depth to Rockhead $(\mathrm{m}$ bgl)	Depth to Seam (m bgl)	Thickness of Overlying Competent Rock $(\mathrm{m}$ bgl)	Seam Thickness of (m)	Ratio of Competent Rock Cover:Seam Thickness
RO101	14.0^{*}	-	-	-	-
RO102	21.0^{*}	-	-	-	-

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Borehole } & \begin{array}{c}\text { Depth to } \\ \text { Rockhead } \\ \text { (m bgl) }\end{array} & \begin{array}{c}\text { Depth to } \\ \text { Seam (m } \\ \text { bgl) }\end{array} & \begin{array}{c}\text { Thickness of } \\ \text { Overlying } \\ \text { Competent Rock } \\ \text { (m bgl) }\end{array} & \begin{array}{c}\text { Seam } \\ \text { Thickness of } \\ \text { (m) }\end{array} & \begin{array}{c}\text { Ratio of } \\ \text { Competent } \\ \text { Rock }\end{array} \\ \text { Cover:Seam } \\ \text { Thickness }\end{array}\right]$

Notes:
\# including banded coal.
THF conjectured to be the Top Hebburn Fell coal seam.
BHF conjectured to be the Bottom Hebburn Fell coal seam.
From the findings of the rotary openhole drilling and the published stratigraphic information it is conjectured that the Bottom Hebburn Fell was encountered in RO103A at 1.1m thick just southeast of its subcrop at 4.7 m below rockhead and was further encountered in boreholes RO104 and RO105 where it was found up to 1.7 m in thickness including mudstone bands. A second coal seam encountered at 22.7 m bgl in RO105 at 1.2 m below rockhead and 0.3 m thick is conjectured to be the Top Hebburn Fell seam. The inferred position and the subcrop beneath drift of the Top and Bottom Hebburn Fell coal seams appear to be largely consistent with the published geology and inferred dip and dip direction.

The Top Hebburn Fell coal seam is considered too thin to have been economically worked. However, the Bottom Hebburn Fell is considered to be of workable thickness.

For typical Coal Measures bedrock (e.g. mudstone), it is generally accepted that there is a risk of surface instability where the thickness of competent bedrock above the worked coal seam is less than 10x the seam thickness. The Bottom Hebburn Fell has been found of workable thickness and with insufficient competent rock cover across the central and southern part of the site, from its inferred subcrop position until the bedrock ramps up to circa 10 m bgl in the south and south east.

However, there has been no evidence to date of any working of the Bottom Hebburn Fell beneath the site from the boreholes drilled. Furthermore there are no mine entries on or close to the site, and the majority of the site in is underlain by a significant thickness of drift meaning historic early mining though drifts, adits or bell pits is considered unlikely. Therefore, is it considered that the overall risk to the site from unrecorded workings in low. However, the risk cannot be ruled out with certainty at this stage.

It is recommended that proof drilling of plots is undertaken across the central and south-eastern part of the site to investigate the mining risk further. The approximate area requiring proof drilling has been determined from the inferred position of the Bottom Hebburn Fell subcrop, dip of the seam and depth to bedrock, and this is shown the Drawing No. C7074/06 presented in Appendix A.

10.4. Geotechnical

Foundations

It is understood that consideration is being given to the development of the site with low rise residential properties with private gardens. Proposed development loads were not available to Sirius at the time of writing, but are expected to be relatively light. If this is not the case, then the following comments may require amendment.

It should be noted that these foundation recommendations could be subject to change if the aforementioned development proposals are subject to change.

The investigations undertaken to date have identified the site surface to predominantly comprise concrete hardstanding from former structures in the site centre and toward the north and north east, with rough grass over topsoil in the south, east and south east. Mounds of soils, assumed to be predominantly from the site strip prior to development of the site are present along much of the eastern boundary and in the south-east corner.

Made ground of suspected processed demolition rubble has been encountered across the majority of the formerly developed areas of the site, typically around 0.4 m thick but locally up to $>3.9 \mathrm{~m}$ bgl
where it has been used to infill subsurface structures. Numerous relic subsurface structures have been encountered including concrete slabs and foundations. Localised granular made ground was encountered within the vicinity of a former pond in the west of the site.

The mounds in the east and south east were largely comprised of made ground of reworked clay with some brick, pottery and concrete fragments.

Underlying the made ground or topsoil was firm and stiff, locally very stiff Pelaw Clay.
Given the current nature of the site, with the presence of significant surface and subsurface structures, backfilled former ponds and mounds up to circa 4.5 m in height, significant earthworks are considered necessary before construction could commence. The made ground has also been found to be contaminated with heavy metals, PAHs, hydrocarbons and asbestos.

Foundation options will have to be finalised upon completion of the earthworks and a detailed foundation schedule produced. However, a summary of possible options is provided below.

Conventional Shallow Footings

The topsoil and made ground is considered unsuitable as a bearing stratum using conventional strip foundations due to the potential for excessive total and differential settlements. It is considered that where made ground post earthworks is less than circa 2.5 m bgl that conventional strip, deep strip or trench fill foundations would be a suitable foundation solution for the low rise residential properties in some parts of the site, especially towards the southeast once the clay mounds are removed.

Cohesive strata have a characteristic minimum undrained shear strength of circa $60 \mathrm{kN} / \mathrm{m}^{2}$ at likely foundation depth across the site and increasing with depth.

The clay soils on this site have been found have a low and medium volume change potential in accordance with NHBC Standards Chapter 4.2. In view of this, foundations placed into natural insitu cohesive soils should be a minimum of 0.9 m deep, locally deepened within the zone of influence of existing or proposed trees. A tree survey was not included in the scope of this investigation, but should be carried out prior to the production of a detailed plot-specific foundation schedule, as a significant number of mature trees are present within the site which will affect the moisture content of clays to greater depths. As such, foundations will be required to extend to a moisture stable level.

Based upon Eurocode 7 compliant calculations, a 600 mm wide strip foundation bearing onto cohesive soils at a minimum depth of 0.9 m bgl could support a line load of up to 90 kN per metre run.

Taking into account the depositional history of Pelaw Clay soils, it is considered that the application of such a line load would induce long term consolidation settlement of 25 mm or less.

In addition, strip/trench foundations should be taken below a line drawn up at 45° from the base of any existing or proposed services. Foundations should also be taken below the base of any previous existing structures / existing structures, and these are likely to be significant in number and extent. If relic foundations, floor slabs or other hard surfaces are encountered, then such structures should be broken out beneath the footprint of proposed foundations, and foundations should extend to bear onto underlying natural soil of suitable strength. This may well require overdeepening of foundations, locally significantly, which may require alternative foundations to be used.

Alternative Foundations

Where made ground or chasing out of subsurface structures and/or invasive plants exceeds circa 2.5 m bgl, or where the influence of trees dictates foundations in excess of 2.5 m deep, alternative foundations will be required, such as piling or shallow reinforced spread foundations on vibro replacement (stone columns). For plots affected by trees, piled foundations are considered the most suitable option. The use of alternative foundations is likely to be focused towards the central and northwestern parts of the site which were previously developed, depending upon the amount of disturbance caused during earthworks and removal of surface/subsurface structures.

The use of alternative foundations may have other benefits such as reducing the amount of contaminated arising produced and lowering risks to construction workers and off-site receptors associated with the contaminated made ground, and therefore could be considered across the site.

The significant number of buried structures could be restrictive to piling and vibro replacement and it is recommended that earthworks includes a full thickness turnover of made ground, or an allowance made for pre-drilling piles. The use of vibro may also be restricted close to existing offsite structures in the northeast and southwest of the site.

The selection and design of a suitable options for alternative foundation, is and will remain the responsible of a suitably qualified piling and/or vibro contractor, who should be contacted for further advice.

It is recommended that a plot specific foundation schedule is prepared, post earthworks to enable detailed design of individual foundations for the exact line loads anticipated within each plot.

Floor Slabs

In accordance with NHBC Standards 2008 (Chapters 4.2, 4.6 and 5.1), suspended ground floor slabs are required in the following situations:

- Made Ground greater than 600 mm thick.
- Where soil swelling may occur.
- Where vibratory ground improvement has been carried out.
- Where the ground has insufficient bearing capacity.

Given the requirement for clean cover system, the presence of trees and the likely use of alternative foundations, at this stage suspended floor slabs should be allowed for across the site.

Sulphate Attack

Based on the samples tested, a Design Sulphate Class of DS-2 and an ACEC Class of AC-2 may be adopted for buried concrete structures.

If buried concrete is only in contact with natural clay soils, then a Design Sulphate Class of DS-1 and an ACEC Class of AC-1 may be adopted.

Groundworks, Excavation Stability and Groundwater Dewatering

Excavations into made ground and natural soils should be assumed to be unstable. No man entry into unsupported excavations should be allowed without an appropriate risk assessment. Reference to CIRIA report 97 (2001) should be made to establish suitable means of support or battering of excavation sides.

Based on the results of this investigation, significant inflows of groundwater into excavations were not encountered, although there were some groundwater seepages at depths of $<1 \mathrm{~m}$ bgl and minor flows below 1 m bgl. It is considered that any groundwater encountered within excavations should be adequately controlled by localised pumping from sumps.

It is recommended that an adequate drainage system for surface water be installed by a competent contractor in order to prevent surface water ponding or collecting both during and post construction, as this may lead to deterioration of the founding stratum. In order to reduce the possibility of softening
or swelling of cohesive soils exposed in the base of foundation trenches, it is recommended that the base of such trenches should be suitably blinded with concrete as soon as is reasonably practicable.

Based upon proven ground conditions (made ground and underlying cohesive strata), it is considered that unlikely that soakaway drainage would be suitable at the site.

10.5. Pavements and Highways

Untreated made ground across the site should be assumed to have a CBR value of $<2.5 \%$ unless proven otherwise via in situ testing. Highways Agency document HD25 Interim Advice Note 73/06 states that where a subgrade has a CBR value lower than 2.5%, it is considered unsuitable support for a pavement foundation since it would tend to deform under construction traffic, and must be improved.

It is recommended that made ground to a depth of at least 1.0 m below subgrade level is excavated, sorted and classified in accordance with Series 600 (Earthworks) of the Highways Agency "Specification for Highways Works". Following the above, any suitable material which can be used as part of highway construction shall be compacted in accordance with the aforementioned earthworks specification.

It is recognised that, in some parts of the site, at present made ground is relatively thin, 0.5 m or less. In such areas, depending upon the final levels, it is anticipated that natural cohesive soils may be present at likely formation depth. In such instance, for preliminary design purposes, based on Atterberg Limit determinations obtained for glacial till encountered on this site, Highways Agency document HD25 Interim Advice Note 73/06 Revision 1 (2009) indicates that a CBR value of 2.5% may be used for the natural soils, for construction in "average" conditions assuming a 'thin' layered construction (300 mm subgrade). The subgrade is however, expected to deteriorate on exposure particularly to rain or groundwater.

Notwithstanding the above, it is recommended that all road design be discussed with the relevant local authority, particularly if highways are to be subject to a Section 38 Agreement.

10.6. Soil and Groundwater Contamination

Risk Evaluation for the Proposed Land Use (residential with gardens)

Human Health Receptors

Bundles and clumps of chrysotile fibres, have been identified within two samples of topsoil and clumps of chrysotile, crocidolite and amosite asbestos fibres have been identified in 11 samples of made ground (both general granular made ground and stockpiled processed material).

In addition, concentrations of heavy metals and PAHs have been recorded sporadically throughout nine further samples of topsoil and made ground. Based on the conceptual model for the site, the presence of asbestos fibres and elevated heavy metals and PAHs may be reasonably anticipated throughout most, if not all, of the made ground and a significant proportion of the topsoil across the site.

Localised 'hotspots' of diesel range hydrocarbon contamination has also been identified within the made ground in TP 105, TP 137 and TP 139. In TP 137 the contamination was also encountered in the underlying natural clay.

As a consequence, at this stage, the made ground is not considered suitable to remain at shallow depth within residential gardens or areas of landscaping and remedial action will be required to break the potential pollutant linkages to end users.

Topsoil will require further sampling and analysis to determine how widespread the asbestos, heavy metal and PAH contamination is, but at this stage a significant proportion of topsoil should be assumed to be unsuitable for re-use, and will require disposal off-site.

Consideration will also need to be taken in respect of working practices and the protection of site workers and adjacent land users against dispersion of asbestos fibres during any earthworks.

Controlled Waters Receptors

With consideration to the soils encountered, the low environmental sensitivity of the site and the presence of significant thicknesses of low permeability cohesive deposits underlying the made ground, no significant potential sources, migratory pathways, or nearby receptors have been identified, and there is no perceived active pollutant linkage. The risks to controlled waters are therefore considered to be low.

Ecological Receptors

No potential pollutant linkages to ecological receptors have been identified for the site.

Utilities

It is recommended that the results of the chemical testing and details of the proposed remedial works are provided to the appropriate utility companies to determine the necessity for service protection. Protection of some services especially water supply pipes, should be anticipated.

Construction and Maintenance Workers

Contamination may pose a short-term (acute) or long-term (chronic) risk to workers during construction and maintenance. The potential risks must be specifically assessed as part of the health and safety evaluation for the works to be performed in accordance with prevailing legislation. Site practices must conform to the specific legislative requirements and follow appropriate guidance (e.g., HSE, 1991; CIRIA, 1996).

On the basis of the results obtained, the revised conceptual site model confirms potential moderate to high risks to construction workers from asbestos fibres in the made ground and topsoil at the site.

However, the risks can be readily adequately mitigated by appropriate PPE and hygiene precautions and good working and soil management practices. It is recommended that procedures outlined in the HSE document "Protection of Workers and the General Public during Remediation of Contaminated Land" be followed. There will be a requirement to comply with the COSHH (Control of Substances Hazardous to Health) Regulations and the CDM (Construction Design and Management 2007) Regulations during any works.

The use of clean cover system and marker layer across the site could also be an option to lower the risks construction workers, to form a 'clean' dig layer, as well as adopting foundation techniques such as piling or shallow reinforced spread foundations on vibro stone columns to keep the disturbance of the underlying contaminated soils to a minimum.

This report should be forwarded to any organisations undertaking groundworks in order for them to assess the risk to their personnel.

Outline Remediation Requirements

The presence of asbestos fibres, heavy metals and PAH concentrations within the made ground across the site are considered likely to present a significant potential risk to human health both during and following development, and require remedial action to break potential pollutant linkages.

In view of the widespread distribution and thickness of the made ground, it is recognised that excavation and off-site disposal of such soils in their entirety is unlikely to be an economically viable or sustainable solution.

The most effective remedial action is therefore considered to be the construction of a clean cover soil capping and marker layer, within at least areas of gardens and landscaping (although it could be considered across the site), which will break all pollutant linkages between end users and the identified contamination.

Sirius considers that, where made ground remains in situ, a minimum of 1000 mm of validated clean cover soils, together with a layer of geotextile separator membrane placed at the base of the capping layer to act as a no dig layer for future residents, would provide a sufficient cover to break pollutant linkages. It is suggested that this comprises a minimum 900 mm subsoil and 100 mm topsoil horizon at the surface, in accordance with NHBC Standards Chapter 9, although an increased thickness of topsoil, and associated commensurate reduction in subsoil could be considered.

However, the thickness of capping layer soils and the form of any geotextile membrane should be discussed in detail with regulators at the earliest opportunity. There may be some requirement to undertake an additional phase of testing of the made ground to confirm the distribution and concentrations of asbestos present, before a 1000 mm thickness would be considered acceptable.

The mounds of reworked clay present in the southeast of the site, are considered suitable for re-use as the clean capping material, subject to suitable materials management and further analysis.

It is noted that in some areas of the site, made ground is only of relatively limited thickness (<0.5m). If reprofiling acts to remove the made ground in its entirety from beneath areas of garden or landscaping, then the requirement for a clean cover soil cap in such areas could be dismissed, providing it is proven that the residual natural soils have not been cross-contaminated e.g. no asbestos fibres remain.

Preparation of, and strict adherence to, a soil management plan will be necessary in order to minimise the potential for cross-contamination of other soils including proposed capping soils. The
risk from future arisings for example from foundation and service trench excavations penetrating into the made ground at its current and/ or relocated position, will also need to be considered in such a plan.

Validation of the thickness and chemical suitability of the cover soils, together with the presence of the geotextile separator, will also be required on completion of the remedial works.

Topsoil has been found to contain asbestos fibres and elevated concentrations of heavy metals and PAHs, and off-site disposal of a significant proportion of topsoil should be anticipated. Further analysis of topsoil should be undertaken to determine if any could be reused on site.

Hotspots of hydrocarbon contamination have also been identified within the made ground and natural clay soils, it is also considered likely that other previously unidentified 'hotspots' of hydrocarbon contamination will be encountered. The most suitable remedial options for hydrocarbon contamination would be excavation followed by either on-site treatment, off-site treatment or disposal off-site. Visual and chemical verification of the removal of hydrocarbon impacted soils will be required.

The above recommendations comprise a general outline of possible or likely works. A remediation strategy report and site material management plan should be produced and agreed with the regulatory authorities prior to commencement of remediation and earthworks.

It is possible that other contamination will be encountered on site during preparatory earthworks. If any areas of noxious, odorous, brightly coloured, liquid, fibrous etc. contamination are identified, further advice should be sought from a suitably qualified consultant.

10.7. Ground Gas/Vapours

Given the presence of isolated pockets of made ground on the site and coal measures at depth beneath the site, there is potential for hazardous ground gases (methane and carbon dioxide) to migrate from the identified sources to this site.

On the basis of the gas monitoring to date and subsequent risk assessment, the site is currently considered to fall within CS2 as defined by BS 8485. Gas protection measures will be required in dwellings, comprising for example, the incorporation of a beam and block or pre-cast concrete subfloor with underfloor venting and gas resistant membrane, or reinforced concrete cast in situ floor slab with underfloor venting.

Monitoring is ongoing at the time of writing and final classification and requirements for protective measure will be reported under separate cover on completion of the monitoring.

According to the BGS, radon protective measures are not required for the site.

10.8. Invasive Plants

Invasive plant species were suspected to be present during the works. However, these observations should be confirmed, and any identified invasive plants treated and removed by an appropriately qualified specialist.

11. REGULATORY APPROVALS

The conclusions and recommendations presented above are considered reasonable based on the findings of the site investigation. However, these cannot be guaranteed to gain regulatory approval and, therefore, the report should be passed to the appropriate regulatory authorities and/or other organisations for their comment and approval prior to undertaking any works on site.

APPENDIX A

FIGURES AND DRAWINGS

APPENDIX B

ENVIROCHECK REPORT

Envirocheck ${ }^{\circledR}$ Report:
 Datasheet

Order Details:

Order Number:
90505614_1_1
Customer Reference:
C7074/Former Siemens Factory, Hebburn/CR
National Grid Reference:
430400, 563500
Slice:
A
Site Area (Ha):
10.3

Search Buffer (m):
1000

Site Details:

Siemens
North Farm Road
HEBBURN
Tyne and Wear
NE31 1LX

Client Details:

S Howson
Sirius Geotechnical \& Environmental Ltd 4245 Park Approach
Thorpe Park
Leeds
LS15 8GB

Report Section	Page Number
Summary	-
Agency \& Hydrological	1
Waste	23
Hazardous Substances	-
Geological	32
Industrial Land Use	35
Sensitive Land Use	46
Data Currency	47
Data Suppliers	52
Useful Contacts	53

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10 m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2016. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.
A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey $1: 10000$ raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup \& Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup \& Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup \& Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright \& intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Data Type	Page Number	On Site	0 to 250 m	251 to 500m	501 to 1000 m (*up to 2000m)
Agency \& Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes		Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 2			2	62
Prosecutions Relating to Controlled Waters			n/a	n / a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 18	2	3	1	2
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 19		Yes		
Pollution Incidents to Controlled Waters	pg 19				2
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances	pg 20	1			
River Quality					
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 20				(*1)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 20	Yes	n/a	n / a	n/a
Drift Deposits	pg 20	1	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 20	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 20	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
Detailed River Network Lines	pg 21		Yes	Yes	n/a
Detailed River Network Offline Drainage					n/a

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000 m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites	pg 23			1	
Historical Landfill Sites	pg 23		1		8
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)	pg 25				4
Licensed Waste Management Facilities (Locations)	pg 25				8
Local Authority Landfill Coverage		1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites	pg 27				3
Registered Landfill Sites	pg 28				5
Registered Waste Transfer Sites	pg 30				1
Registered Waste Treatment or Disposal Sites	pg 31				2
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 32	Yes	n/a	n/a	n/a
BGS Recorded Mineral Sites	pg 32			1	6
Brine Compensation Area			n/a	n/a	n/a
Coal Mining Affected Areas	pg 33	Yes	n/a	n / a	n/a
Mining Instability	pg 33	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 33	Yes	Yes	n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 33	Yes	Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 33	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 34	Yes		n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 34	Yes	Yes	n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000 m (*up to 2000m)
Industrial Land Use					
Contemporary Trade Directory Entries	pg 35	1	36	9	69
Fuel Station Entries	pg 45			1	1
Gas Pipelines					
Underground Electrical Cables					
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt	pg 46			1	1
Areas of Unadopted Green Belt	pg 46				1
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 46				1
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	$\begin{aligned} & \text { A8NE } \\ & \text { (SE) } \end{aligned}$	0	1	$\begin{array}{r} 430450 \\ 563400 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NE (E)	0	1	$\begin{array}{r} 430500 \\ 563500 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NE (S)	0	1	$\begin{array}{r} 430450 \\ 563300 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	266	1	$\begin{array}{r} 430050 \\ 563750 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type Limited Potential for Groundwater Flooding to Occur	A7NE (W)	273	1	$\begin{array}{r} 430000 \\ 563501 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	$\begin{gathered} \text { A13NW } \\ (\mathrm{N}) \end{gathered}$	280	1	$\begin{array}{r} 430399 \\ 564050 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (N)	280	1	$\begin{array}{r} 430300 \\ 564050 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	285	1	$\begin{array}{r} 430100 \\ 563950 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type Potential for Groundwater Flooding to Occur at Surface	$\begin{gathered} \text { A13NW } \\ \text { (NW) } \end{gathered}$	287	1	$\begin{aligned} & 430150 \\ & 564000 \\ & \hline \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{aligned} & \text { A7NE } \\ & (\mathrm{SW}) \end{aligned}$	302	1	$\begin{aligned} & 429950 \\ & 563300 \\ & \hline \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (N)	305	1	$\begin{array}{r} 430200 \\ 564050 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{gathered} \text { A12NE } \\ \text { (NW) } \end{gathered}$	326	1	$\begin{array}{r} 430050 \\ 563950 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (N)	337	1	$\begin{array}{r} 430250 \\ 564100 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (N)	380	1	$\begin{array}{r} 430300 \\ 564150 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (N)	380	1	$\begin{array}{r} 430350 \\ 564150 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13NW (N)	381	1	$\begin{array}{r} 430399 \\ 564150 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (NW)	390	1	$\begin{aligned} & 430050 \\ & 564050 \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{gathered} \text { A13NW } \\ (\mathrm{N}) \end{gathered}$	417	1	$\begin{array}{r} 430150 \\ 564150 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{gathered} \text { A18SW } \\ (\mathrm{N}) \end{gathered}$	430	1	$\begin{array}{r} 430300 \\ 564200 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A18SW (N)	430	1	$\begin{array}{r} 430350 \\ 564200 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A18SW (N)	430	1	$\begin{aligned} & 430399 \\ & 564200 \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	440	1	$\begin{aligned} & 430100 \\ & 564150 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A9NW (SE)	451	1	$\begin{aligned} & 430950 \\ & 563200 \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{gathered} \text { A18SW } \\ (\mathrm{N}) \end{gathered}$	463	1	$\begin{aligned} & 430150 \\ & 564200 \end{aligned}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{aligned} & \text { ATSE } \\ & \text { (SW) } \end{aligned}$	464	1	$\begin{array}{r} 429850 \\ 563100 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SW (N)	480	1	$\begin{array}{r} 430300 \\ 564250 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SW (N)	480	1	$\begin{array}{r} 430350 \\ 564250 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	$\begin{gathered} \text { A18SW } \\ (\mathrm{N}) \end{gathered}$	480	1	$\begin{array}{r} 430399 \\ 564250 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A9NW (E)	481	1	$\begin{array}{r} 431000 \\ 563300 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	$\begin{gathered} \text { A18SW } \\ \text { (NW) } \end{gathered}$	483	1	$\begin{array}{r} 430100 \\ 564200 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	$\begin{gathered} \text { A12SE } \\ (\mathrm{W}) \end{gathered}$	486	1	$\begin{array}{r} 429800 \\ 563600 \\ \hline \end{array}$
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	$\begin{gathered} \text { A12SE } \\ (\mathrm{W}) \end{gathered}$	497	1	$\begin{array}{r} 429800 \\ 563650 \\ \hline \end{array}$
1	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	342	2	$\begin{aligned} & 429980 \\ & 563800 \end{aligned}$
2	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	374	2	$\begin{aligned} & 429940 \\ & 563750 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	540	2	$\begin{aligned} & 429780 \\ & 563801 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	540	2	$\begin{aligned} & 429780 \\ & 563800 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	540	2	$\begin{aligned} & 429780 \\ & 563800 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	540	2	$\begin{aligned} & 429780 \\ & 563800 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	541	2	$\begin{aligned} & 429785 \\ & 563835 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consents	$\begin{aligned} & \text { A12SE } \\ & \text { (NW) } \end{aligned}$	546	2	$\begin{aligned} & 429780 \\ & 563840 \end{aligned}$
4	Discharge Consents	A12NE (NW)	557	2	$\begin{aligned} & 429780 \\ & 563900 \end{aligned}$
5	Discharge Consents	A7NW (W)	575	2	$\begin{aligned} & 429680 \\ & 563410 \end{aligned}$
5	Discharge Consents	A7NW (W)	575	2	$\begin{aligned} & 429680 \\ & 563410 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
6	Discharge Consents	A14SE (E)	586	2	$\begin{aligned} & 431145 \\ & 563656 \end{aligned}$
7	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	594	2	$\begin{aligned} & 430000 \\ & 564270 \end{aligned}$
8	Discharge Consents	A7NW (W)	640	2	$\begin{aligned} & 429610 \\ & 563330 \end{aligned}$
9	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	661	2	$\begin{aligned} & 429680 \\ & 563000 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
10	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	663	2	$\begin{aligned} & 430000 \\ & 564350 \end{aligned}$
11	Discharge Consents	A7SW (SW)	670	2	$\begin{aligned} & 429670 \\ & 563000 \end{aligned}$
11	Discharge Consents	A7SW (SW)	675	2	$\begin{aligned} & 429663 \\ & 563002 \end{aligned}$
11	Discharge Consents	A7SW (SW)	675	2	$\begin{aligned} & 429663 \\ & 563002 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	688	2	$\begin{aligned} & 429663 \\ & 562977 \end{aligned}$
11	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	689	2	$\begin{aligned} & 429660 \\ & 562980 \end{aligned}$
11	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	689	2	$\begin{aligned} & 429660 \\ & 562980 \end{aligned}$
11	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	689	2	$\begin{aligned} & 429660 \\ & 562980 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	Discharge Consents	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	714	2	$\begin{aligned} & 429620 \\ & 563000 \end{aligned}$
11	Discharge Consents	$\begin{gathered} \text { A7SW } \\ \text { (SW) } \end{gathered}$	714	2	$\begin{aligned} & 429620 \\ & 563000 \end{aligned}$
12	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	722	2	$\begin{aligned} & 429800 \\ & 564270 \end{aligned}$
12	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	722	2	$\begin{aligned} & 429800 \\ & 564270 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
12	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	722	2	$\begin{aligned} & 429810 \\ & 564280 \end{aligned}$
12	Discharge Consents	A17SE (NW)	722	2	$\begin{aligned} & 429800 \\ & 564270 \end{aligned}$
13	Discharge Consents	A7NW (W)	735	2	$\begin{aligned} & 429520 \\ & 563250 \end{aligned}$
13	Discharge Consents	A7NW (W)	735	2	$\begin{aligned} & 429520 \\ & 563250 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
13	Discharge Consents	A7NW (W)	735	2	$\begin{aligned} & 429520 \\ & 563250 \end{aligned}$
13	Discharge Consents	A7NW (W)	735	2	$\begin{aligned} & 429520 \\ & 563250 \end{aligned}$
13	Discharge Consents	A7NW (W)	736	2	$\begin{aligned} & 429520 \\ & 563245 \end{aligned}$
14	Discharge Consents	A17SE (N)	773	2	$\begin{aligned} & 430040 \\ & 564490 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
15	Discharge Consents	A7SW (SW)	783	2	$\begin{aligned} & 429600 \\ & 562900 \end{aligned}$
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	797	2	$\begin{aligned} & 429812 \\ & 564383 \end{aligned}$
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	797	2	$\begin{aligned} & 429820 \\ & 564390 \end{aligned}$
16	Discharge Consents	A17SE (NW)	797	2	$\begin{aligned} & 429820 \\ & 564390 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	797	2	$\begin{aligned} & 429820 \\ & 564390 \end{aligned}$
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	811	2	$\begin{aligned} & 429810 \\ & 564400 \end{aligned}$
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	811	2	$\begin{aligned} & 429810 \\ & 564400 \end{aligned}$
16	Discharge Consents	A17SE (NW)	811	2	$\begin{aligned} & 429810 \\ & 564400 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	811	2	$\begin{aligned} & 429810 \\ & 564400 \end{aligned}$
16	Discharge Consents	A17SE (NW)	811	2	$\begin{aligned} & 429810 \\ & 564400 \end{aligned}$
16	Discharge Consents	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	812	2	$\begin{aligned} & 429815 \\ & 564405 \end{aligned}$
16	Discharge Consents	A17SE (NW)	815	2	$\begin{aligned} & 429810 \\ & 564405 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	Discharge Consents	A17NE (N)	823	2	$\begin{aligned} & 430030 \\ & 564540 \end{aligned}$
18	Discharge Consents	A7NW (W)	830	2	$\begin{aligned} & 429425 \\ & 563428 \end{aligned}$
19	Discharge Consents	A6SE (SW)	948	2	$\begin{aligned} & 429380 \\ & 562960 \end{aligned}$
19	Discharge Consents	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	948	2	$\begin{aligned} & 429380 \\ & 562960 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
19	Discharge Consents	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	957	2	$\begin{aligned} & 429370 \\ & 562960 \end{aligned}$
19	Discharge Consents	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	957	2	$\begin{aligned} & 429370 \\ & 562960 \end{aligned}$
20	Discharge Consents	A6SE (W)	970	2	$\begin{aligned} & 429295 \\ & 563165 \end{aligned}$
20	Discharge Consents	A6NE (W)	971	2	$\begin{aligned} & 429290 \\ & 563190 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
20	Discharge Consents	A6NE (W)	971	2	$\begin{aligned} & 429290 \\ & 563190 \end{aligned}$
20	Discharge Consents	A6SE (W)	976	2	$\begin{aligned} & 429290 \\ & 563160 \end{aligned}$
21	Local Authority Pollution Prevention and Controls	$\begin{aligned} & \text { A13SE } \\ & \text { (NE) } \end{aligned}$	0	3	$\begin{aligned} & 430455 \\ & 563544 \end{aligned}$
22	Local Authority Pollution Prevention and Controls	A13SW (NW)	0	3	$\begin{aligned} & 430318 \\ & 563639 \end{aligned}$
23	Local Authority Pollution Prevention and Controls	A8NW (S)	42	3	$\begin{aligned} & 430347 \\ & 563235 \end{aligned}$
24	Local Authority Pollution Prevention and Controls	A8NE (S)	76	3	$\begin{aligned} & 430426 \\ & 563190 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
25	Local Authority Pollution Prevention and Controls	A8SW (S)	110	3	$\begin{aligned} & 430317 \\ & 563171 \end{aligned}$
26	Local Authority Pollution Prevention and Controls	A13NE (NE)	369	3	$\begin{aligned} & 430689 \\ & 563998 \end{aligned}$
27	Local Authority Pollution Prevention and Controls	$\begin{aligned} & \text { A9SE } \\ & \text { (SE) } \end{aligned}$	704	3	$\begin{aligned} & 431086 \\ & 562862 \end{aligned}$
28	Local Authority Pollution Prevention and Controls Name: O Donnels Location: Rhodes Street, NEWCASTLE UPON TYNE, Tyne and Wear, NE Authority: City of Newcastle upon Tyne Council, Environmental Health Department Permit Reference: NOT GIVEN Dated: Not Supplied Process Type: Local Authority Air Pollution Control Description: PG3/1Blending, packing, loading and use of bulk cement Status: Authorisation revokedRevoked Positional Accuracy: Manually positioned to the road within the address or location	A17SW (NW)	997	4	$\begin{aligned} & 429419 \\ & 564193 \end{aligned}$
	Nearest Surface Water Feature	A8NW (SW)	46	-	$\begin{aligned} & 430220 \\ & 563301 \\ & \hline \end{aligned}$
29	Pollution Incidents to Controlled Waters	A7SE (SW)	561	2	$\begin{aligned} & 429800 \\ & 563000 \end{aligned}$
30	Pollution Incidents to Controlled Waters	A18NW (N)	937	2	$\begin{aligned} & 430200 \\ & 564700 \end{aligned}$

Agency \& Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
31	Registered Radioactive Substances	A13SW (NW)	0	5	$\begin{aligned} & 430323 \\ & 563644 \end{aligned}$
	Water Abstractions	(SE)	1892	2	$\begin{aligned} & 432000 \\ & 562100 \end{aligned}$
	Groundwater Vulnerability Soil Classification: Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case vulnerability classification (H) assumed, until proved otherwise Map Sheet: Sheet 5 Tyne and Tees 1:100,000 Scale:	A8NW (SW)	0	2	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Drift Deposits Drift Deposit: Low permeability drift deposits occuring at the surface and overlying Major and Minor Aquifers are head, clay-with-flints, brickearth, peat, river terrace deposits and marine and estuarine alluvium Sheet 5 Tyne and Tees Map Sheet: $1: 100,000$	A8NW (SW)	0	2	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Bedrock Aquifer Designations Aquifer Designation: Secondary Aquifer - A	A8NW (SW)	0	1	$\begin{array}{r} 430399 \\ 563501 \\ \hline \end{array}$
	Superficial Aquifer Designations Aquifer Designation: Unproductive Strata	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Superficial Aquifer Designations Aquifer Designation: Unknown (Lakes and Landslip)	$\begin{aligned} & \text { A8NE } \\ & \text { (SE) } \end{aligned}$	0	1	$\begin{array}{r} 430501 \\ 563347 \\ \hline \end{array}$
	Superficial Aquifer Designations Aquifer Designation: Unknown (Lakes and Landslip)	A8NE (E)	0	1	$\begin{array}{r} 430504 \\ 563473 \\ \hline \end{array}$
	Extreme Flooding from Rivers or Sea without Defences None				
	Flooding from Rivers or Sea without Defences None				
	Areas Benefiting from Flood Defences None				
	Flood Water Storage Areas None				
	Flood Defences None				

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
32	Detailed River Network Lines	A8NW (SW)	36	2	$\begin{aligned} & 430268 \\ & 563273 \end{aligned}$
33	Detailed River Network Lines	A8NW (SW)	46	2	$\begin{aligned} & 430220 \\ & 563301 \end{aligned}$
34	Detailed River Network Lines	A8NW (W)	141	2	$\begin{aligned} & 430117 \\ & 563402 \end{aligned}$
35	Detailed River Network Lines	$\begin{gathered} \text { A12SE } \\ (\mathrm{W}) \end{gathered}$	344	2	$\begin{aligned} & 429931 \\ & 563518 \end{aligned}$
36	Detailed River Network Lines	$\begin{aligned} & \text { A7SE } \\ & \text { (SW) } \end{aligned}$	366	2	$\begin{aligned} & 429966 \\ & 563106 \end{aligned}$
37	Detailed River Network Lines	A7SE (SW)	380	2	$\begin{aligned} & 429939 \\ & 563118 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
38	Detailed River Network Lines	$\begin{gathered} \text { A12SE } \\ \text { (W) } \end{gathered}$	438	2	$\begin{aligned} & 429849 \\ & 563604 \end{aligned}$
39	Detailed River Network Lines	$\begin{gathered} \text { A12SE } \\ (\mathrm{W}) \end{gathered}$	439	2	$\begin{aligned} & 429843 \\ & 563573 \end{aligned}$
40	Detailed River Network Lines	$\begin{aligned} & \text { A7SE } \\ & \text { (SW) } \end{aligned}$	440	2	$\begin{aligned} & 429848 \\ & 563158 \end{aligned}$
	Detailed River Network Offline Drainage None				

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
41	BGS Recorded Landfill Sites	A13NW (N)	348	-	$\begin{aligned} & 430167 \\ & 564082 \end{aligned}$
42	Historical Landfill Sites	A13SW (NW)	127	2	$\begin{aligned} & 430182 \\ & 563700 \end{aligned}$
43	Historical Landfill Sites Licence Holder: Mr C Keith Location: Wincomblee Road, Newcastle Upon Tyne, Tyne and Wear Name: C and J Marine Services Operator Location: Not Supplied Boundary Accuracy: As Supplied Provider Reference: EAHLD06644 First Input Date: Not Supplied Last Input Date: Not Supplied Specified Waste Deposited Waste included Inert Waste Type: EA Waste Ref: 0 Regis Ref: YO1/L/KEI001 WRC Ref: \quad Not Supplied BGS Ref: Not Supplied Other Ref: TW 349 NC	A12NE (NW)	625	2	$\begin{aligned} & 429798 \\ & 564110 \end{aligned}$
44	Historical Landfill Sites	A18SW (N)	643	2	$\begin{aligned} & 430108 \\ & 564376 \end{aligned}$
45	Historical Landfill Sites	A3NE (S)	659	2	$\begin{aligned} & 430707 \\ & 562630 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
46	Historical Landfill Sites	$\begin{gathered} \text { A12SW } \\ (\mathrm{W}) \end{gathered}$	746	2	$\begin{aligned} & 429544 \\ & 563728 \end{aligned}$
47	Historical Landfill Sites	$\begin{aligned} & \text { A2NW } \\ & \text { (SW) } \end{aligned}$	819	2	$\begin{aligned} & 429608 \\ & 562828 \end{aligned}$
48	Historical Landfill Sites	A14NE (NE)	860	2	$\begin{aligned} & 431291 \\ & 564039 \end{aligned}$
49	Historical Landfill Sites	A18NW (N)	974	2	$\begin{aligned} & 430248 \\ & 564742 \end{aligned}$
50	Historical Landfill Sites	$\begin{aligned} & \text { A3SE } \\ & \text { (S) } \end{aligned}$	979	2	$\begin{aligned} & 430587 \\ & 562279 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
51	Licensed Waste Management Facilities (Landfill Boundaries)	A4NE (SE)	866	2	$\begin{aligned} & 431247 \\ & 562815 \end{aligned}$
52	Licensed Waste Management Facilities (Landfill Boundaries)	$\begin{aligned} & \text { A4NE } \\ & \text { (SE) } \end{aligned}$	900	2	$\begin{aligned} & 431264 \\ & 562766 \end{aligned}$
53	Licensed Waste Management Facilities (Landfill Boundaries)	$\begin{gathered} \text { A3SE } \\ \text { (S) } \end{gathered}$	982	2	$\begin{aligned} & 430589 \\ & 562276 \end{aligned}$
54	Licensed Waste Management Facilities (Landfill Boundaries)	A4NE (SE)	982	2	$\begin{aligned} & 431324 \\ & 562708 \end{aligned}$
55	Licensed Waste Management Facilities (Locations) Licence Number: 0 Location: Wincomblee Road, Walker, Newcastle Upon Tyne, Tyne \& Wear, NE6 3PL Operator Name: Mr C Keith, C \& J Marine Services Operator Location: Wincomblee Road, Walker, Newcastle Upon Tyne, Tyne \& Wear, NE6 3PL Authority: Environment Agency - North East Region, Northumbria Area Site Category: Landfills Taking Non-biodegradeable Wastes (Not Construction) Licence Status: Surrendered Issued: 27th January 1994 Last Modified: Not Supplied Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: 2nd August 1994 IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 10 m	A12NE (NW)	687	2	$\begin{aligned} & 429770 \\ & 564180 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
55	Licensed Waste Management Facilities (Locations)	A12NE (NW)	687	2	$\begin{aligned} & 429770 \\ & 564180 \end{aligned}$
56	Licensed Waste Management Facilities (Locations) Licence Number: 67542 Location: 1 Wincomblee Road, Walker, Newcastle Upon Tyne, Tyne \& Wear, NE6 3PL Operator Name: Jackson \& Co Operator Location: Not Supplied Authority: Environment Agency - North East Region, North East Area Site Category: Household, Commercial And Industrial Transfer Stations Licence Status: Surrendered Issued: 4th November 1993 Last Modified: Not Supplied Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: 9th June 1998 IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 100m	A17SW (NW)	817	2	$\begin{aligned} & 429700 \\ & 564300 \end{aligned}$
57	Licensed Waste Management Facilities (Locations) Licence Number: 64093 Location: Unit 10, Bill Quay Ind Est, Pelaw, Gateshead, Tyne \& Wear, NE10 0SQ Operator Name: Fish Robert Edward Operator Location: Not Supplied Authority: Environment Agency - North East Region, North East Area Site Category: End of Life Vehicles Licence Status: Issued Issued: 4th November 2004 Last Modified: Not Supplied Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: Not Supplied IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 100m	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	867	2	$\begin{aligned} & 429500 \\ & 562900 \end{aligned}$
58	Licensed Waste Management Facilities (Locations) Licence Number: 0 Location: Merton Road / White Street, Newcastle Upon Tyne, Tyne \& Wear Operator Name: Tyne \& Wear Development Corporation Operator Location: Hadrian House, Higham Place, Newcastle Upon Tyne, Tyne \& Wear, NE1 8 AF Authority: Environment Agency - North East Region, Northumbria Area Site Category: Landfills Taking Non-biodegradeable Wastes (Not Construction) Licence Status: Surrendered Issued: 27th October 1989 Last Modified: Not Supplied Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: 31st March 1994 IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 10m	A12SW (W)	876	2	$\begin{aligned} & 429400 \\ & 563570 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
58	Licensed Waste Management Facilities (Locations)	$\begin{aligned} & \text { A12SW } \\ & (\mathrm{W}) \end{aligned}$	876	2	$\begin{aligned} & 429400 \\ & 563570 \end{aligned}$
59	Licensed Waste Management Facilities (Locations) Licence Number: 67476 Location: Wear, NE6 3PN Operator Name: Jebb Metals (Newcastle) Ltd Operator Location: Not Supplied Authority: Environment Agency - North East Region, North East Area Site Category: Metal Recycling Sites (Mixed) Licence Status: Modified Issued: 27th March 1991 Last Modified: 10th August 2006 Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: Not Supplied IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 100m	A17SW (NW)	895	2	$\begin{aligned} & 429600 \\ & 564300 \end{aligned}$
60	Licensed Waste Management Facilities (Locations) Licence Number: 67561 Location: Walker Station, Station Road, Walker, Newcastle Upon Tyne, Tyne \& Wear, NE6 3PN Operator Name: Jebb Metals (Newcastle) Ltd Operator Location: Not Supplied Authority: Environment Agency - North East Region, North East Area Site Category: Metal Recycling Sites (Mixed) Licence Status: Transferred Issued: 10th September 1997 Last Modified: 19th December 2011 Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Surrendered: Not Supplied IPPC Reference: Not Supplied Positional Accuracy: Located by supplier to within 100m	A17SW (NW)	958	2	$\begin{aligned} & 429600 \\ & 564400 \end{aligned}$
	Local Authority Landfill Coverage Name: South Tyneside Metropolitan Borough Council - Has no landfill data to supply		0	6	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Local Authority Landfill Coverage Name: Gateshead Metropolitan Borough Council - Has supplied landfill data		45	7	$\begin{aligned} & 430248 \\ & 563286 \end{aligned}$
	Local Authority Landfill Coverage Name: City of Newcastle Upon Tyne - Has supplied landfill data		402	4	$\begin{aligned} & 429879 \\ & 563605 \end{aligned}$
61	Local Authority Recorded Landfill Sites	A3NE (S)	552	7	$\begin{aligned} & 430430 \\ & 562709 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
62	Local Authority Recorded Landfill Sites	A2NW (SW)	821	7	$\begin{aligned} & 429609 \\ & 562824 \end{aligned}$
63	Local Authority Recorded Landfill Sites	$\begin{gathered} \text { A3SE } \\ \text { (S) } \end{gathered}$	983	7	$\begin{aligned} & 430585 \\ & 562275 \end{aligned}$
64	Registered Landfill Sites Licence Holder: C Keith C \& J Marine Services Licence Reference: TW 349 NC Site Location: Wincomblee Road, Walker, NEWCASTLE UPON TYNE, Tyne and Wear, NE6 3PL Licence Easting: 429770 Licence Northing: 564200 Operator Location: As Site Address Authority: Environment Agency - North East Region, Northumbria Area Site Category: Landfill Max Input Rate: \quad Very Small (Less than 10,000 tonnes per year) Waste Source No known restriction on source of waste Restrictions: Status: Licence known to be surrenderedSurrendered Dated: 27th January 1994 Preceded By Not Given Licence: Superseded By Not Given Licence: Positional Accuracy: Manually positioned to the address or location Boundary Accuracy: Not Applicable Authorised Waste Clean Inert Hardcore/Building Rubble Max. Total Deposit Permitted Prohibited Waste Biodegradable/Putrescible Waste Hazardous Wastes Polluting Wastes Special Wastes Waste N.O.S.	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	699	2	$\begin{aligned} & 429770 \\ & 564200 \end{aligned}$
	Registered Landfill Sites				
65	Licence Holder: Tyne \& Wear Development Corporation Licence Reference: TW 208 NC Site Location: Walker Railway Cutting, Walker, Newcastle Upon Tyne, Tyne And Wear Licence Easting: 429450 Licence Northing: 563550 Operator Location: Hadrian House, Higham Place, NEWCASTLE UPON TYNE, Tyne and Wear, NE1 8AF Authority: Environment Agency - North East Region, Northumbria Area Site Category: Landfill - Railway cutting Max Input Rate: Very Large (Equal to or greater than 250,000 tonnes per year) Waste Source No known restriction on source of waste Restrictions: Licence known to be surrenderedSurrendered Status: 27th October 1989 Dated: Not Given Preceded By Licence: Not Given Superseded By Licence: Positional Accuracy: Manually positioned to the address or location Boundary Accuracy: Not Applicable Authorised Waste Tyne And Wear C, Renfrew C -Rubble * Tyne And Wear,Renfrew Di -Coh.Inorg * Tyne And Wear,Renfrew Dii -Coh.Inorg * Tyne And Wear,Renfrew E -Frict.Inorg *	$\begin{gathered} \text { A12SW } \\ (\mathrm{W}) \end{gathered}$	824	2	$\begin{aligned} & 429450 \\ & 563550 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
66	Registered Landfill Sites Licence Holder: Gateshead M.B.C. Licence Reference: TW9 22 GH Site Location: Pelaw Quarry Landfill Site, Wardley Lane, Pelaw, Gateshead, Tyne And Wear Licence Easting: 430900 Licence Northing: 562500 Operator Location: Central Depot, Park Road, GATESHEAD, Tyne and Wear, NE8 3HN Authority: Environment Agency - North East Region, Northumbria Area Site Category: Landfill Max Input Rate: Very Large (Equal to or greater than 250,000 tonnes per year) Waste Source Restrictions: Status: Record supersededSuperseded Dated: 1st November 1985 Preceded By Not Given Licence: Superseded By TW9 22 GH Licence: Positional Accuracy: Manually positioned to the address or location Boundary Accuracy: Not Applicable Authorised Waste Tyne \& Wear A, Renfrew A. * Tyne \& Wear B, Renfrew B. * Tyne And Wear C, Renfrew C * Tyne And Wear D I, Renfrew D I, * Tyne And Wear D li, Renfrew D li, * Tyne And Wear E, Renfrew E, * Tyne And Wear F, Renfrew F * Environment Agency Waste N.O.S must give specific authorisation for this waste to be acceptedWaste requires prior approval	$\begin{aligned} & \text { A4SW } \\ & \text { (SE) } \end{aligned}$	855	2	$\begin{aligned} & 430900 \\ & 562500 \end{aligned}$
66	Registered Landfill Sites Licence Holder: Gateshead M.B.C. Licence Reference: TW9 22 GH Site Location: Pelaw Quarry Landfill Site, Wardley Lane, Pelaw, Gateshead, Tyne And Wear Licence Easting: 430900 Licence Northing: 562495 Operator Location: Central Depot, Park Road, GATESHEAD, Tyne and Wear, NE8 3HN Authority: Site Category: Landfill Max Input Rate: Very Large (Equal to or greater than 250,000 tonnes per year) Waste Source No known restriction on source of waste Restrictions: Status: Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled Dated: 1st July 1989 Preceded By TW9 22 GH Licence: Superseded By Not Given Licence: Positional Accuracy: Manually positioned to the address or location Boundary Accuracy: Not Applicable Authorised Waste Drums Over 25 L.Cap To Be Open/Inspect Household + Commercial Waste Industrial Wastes Max.Waste Permitted By Licence-Stated Prohibited Waste Liquid Wastes - In Drums Or Not Special Wastes	$\begin{aligned} & \text { A4SW } \\ & \text { (SE) } \end{aligned}$	859	2	$\begin{aligned} & 430900 \\ & 562495 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
67	Registered Landfill Sites	A4NE (SE)	988	2	$\begin{aligned} & 431350 \\ & 562750 \end{aligned}$
68	Registered Waste Transfer Sites	A17SW (NW)	817	2	$\begin{aligned} & 429700 \\ & 564300 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
69	Registered Waste Treatment or Disposal Sites Licence Holder: C \& M Grieveson t/a C \& R Grieveson Licence Reference: TW 377 NC Site Location: Walker Station, Station Road, Walker, NEWCASTLE UPON TYNE, Tyne and Wear, NE6 3PN Operator Location: As Site Address Authority: Environment Agency - North East Region, Northumbria Area Site Category: Scrapyard Max Input Rate: Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) Waste Source No known restriction on source of waste Restrictions: Licence Status: Operational as far as is knownOperational Dated: Preceded By Not Given Licence: Superseded By Not Given Licence: Positional Accuracy: Manually positioned to the road within the address or location Boundary Quality: Not Supplied Authorised Waste Max.Waste Permitted By Licence Scrap Metal As In S.M.Dealers Act'64 Prohibited Waste Asbestos Clinical Wastes Flammable Solvents Medical (Misuse Of Drugs Act '71) Percussive/Explosive Waste Putrescible Waste Spec.Waste (Epa'90:S62/1996 Regs)N.O.S Sub'S Control. Radioactive Subs Act'60 Waste N.O.S.	A17SW (NW)	927	2	$\begin{aligned} & 429500 \\ & 564200 \end{aligned}$
69	Registered Waste Treatment or Disposal Sites Licence Holder: Jebb Metals (Newcastle) Ltd Licence Reference: TW 244 NC Site Location: Station Road, Walker, NEWCASTLE UPON TYNE, Tyne and Wear, NE6 3PN Operator Location: As Site Address Authority: Environment Agency - North East Region, Northumbria Area Site Category: Scrapyard Max Input Rate: \quad Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) Waste Source No known restriction on source of waste Restrictions: Licence Status: Operational as far as is knownOperational Dated: Preceded By Not Given Licence: Superseded By Not Given Licence: Positional Accuracy: Manually positioned to the address or location Boundary Quality: Not Supplied Authorised Waste Asbestos Batteries Hazardous Items Assoc. With Vehicles Oil \& Petrol Scrap Metal As In S.M.Dealers Act 1964 Prohibited Waste Asbestos Clinical Wastes Flammable Solvents Liable To Cause Environmental Hazards Medical (Misuse Of Drugs Act) Percussive/Explosive Waste Poisonous, Noxious Wastes Radioactive Wastes Spec.Waste (Epa'90:S62/1996 Regs) Transformers/Capacitors Contain. Pcb	A17SW (NW)	927	2	$\begin{aligned} & 429500 \\ & 564200 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid Geology $\begin{array}{ll}\text { Description: } & \text { Pennine Middle Coal Measures Formation And South Wales Middle Coal } \\ & \text { Measures Formation (Undifferentiated) }\end{array}$	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
70	BGS Recorded Mineral Sites	A13NE (N)	419	1	$\begin{aligned} & 430458 \\ & 564168 \end{aligned}$
71	BGS Recorded Mineral Sites	$\begin{gathered} \text { A3SE } \\ (\mathrm{S}) \end{gathered}$	763	1	$\begin{aligned} & 430600 \\ & 562500 \end{aligned}$
71	BGS Recorded Mineral Sites	$\begin{gathered} \text { A3SE } \\ (\mathrm{S}) \end{gathered}$	763	1	$\begin{aligned} & 430600 \\ & 562500 \end{aligned}$
72	BGS Recorded Mineral Sites	A7NW (W)	810	1	$\begin{aligned} & 429454 \\ & 563490 \end{aligned}$
73	BGS Recorded Mineral Sites	$\begin{aligned} & \text { A4SW } \\ & \text { (SE) } \end{aligned}$	855	1	$\begin{aligned} & 430900 \\ & 562500 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
73	BGS Recorded Mineral Sites	A4SW (SE)	855	1	$\begin{aligned} & 430900 \\ & 562500 \end{aligned}$
74	BGS Recorded Mineral Sites	$\begin{aligned} & \text { A3SE } \\ & \text { (S) } \end{aligned}$	939	1	$\begin{aligned} & 430506 \\ & 562317 \end{aligned}$
	Coal Mining Affected Areas Description: In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A8NW (SW)	0	8	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Mining Instability Mining Evidence: Inconclusive Coal Mining Source: Ove Arup \& Partners Boundary Quality: As Supplied	A8NW (SW)	0	-	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Non Coal Mining Areas of Great Britain No Hazard				
	Potential for Collapsible Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: } & \begin{array}{l}\text { Very Low } \\ \text { Source: }\end{array} \\ \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Potential for Collapsible Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: } & \begin{array}{l}\text { Very Low } \\ \text { Source: }\end{array} \\ \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563501 \end{aligned}$
	Potential for Compressible Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: } & \text { Very Low } \\ \text { Source: } & \text { British Geological Survey, National Geoscience Information Service }\end{array}$	$\begin{aligned} & \text { A8NE } \\ & \text { (SE) } \end{aligned}$	0	1	$\begin{aligned} & 430501 \\ & 563347 \end{aligned}$
	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A8NE (E)	0	1	$\begin{aligned} & 430504 \\ & 563473 \end{aligned}$
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Potential for Compressible Ground Stability Hazards Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service	A8NW (SW)	32	1	$\begin{aligned} & 430209 \\ & 563334 \end{aligned}$
	Potential for Compressible Ground Stability Hazards Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563501 \end{aligned}$
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563501 \end{aligned}$
	Potential for Landslide Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: } & \begin{array}{l}\text { Very Low } \\ \text { Source: }\end{array} \\ \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Landslide Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: Low } \\ \text { Source: } & \text { British Geological Survey, National Geoscience Information Service }\end{array}$	$\begin{gathered} \text { A13SW } \\ \text { (NW) } \end{gathered}$	136	1	$\begin{aligned} & 430149 \\ & 563624 \end{aligned}$
	Potential for Landslide Ground Stability Hazards Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service	$\begin{gathered} \text { A13SW } \\ \text { (NW) } \end{gathered}$	194	1	$\begin{aligned} & 430142 \\ & 563846 \end{aligned}$
	Potential for Landslide Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: Low } \\ \text { Source: } & \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A7NE (W)	237	1	$\begin{aligned} & 430011 \\ & 563391 \end{aligned}$
	Potential for Landslide Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: Low } \\ \text { Source: } & \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563392 \end{aligned}$
	Potential for Running Sand Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service	$\begin{aligned} & \text { A8NE } \\ & \text { (SE) } \end{aligned}$	0	1	$\begin{aligned} & 430501 \\ & 563347 \end{aligned}$
	Potential for Running Sand Ground Stability Hazards $\begin{array}{ll}\text { Hazard Potential: } & \text { Very Low } \\ \text { Source: } & \text { British Geological Survey, National Geoscience Information Service }\end{array}$	A8NE (E)	0	1	$\begin{aligned} & 430504 \\ & 563473 \end{aligned}$
	Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	$\begin{aligned} & \text { A8NW } \\ & (\mathrm{SW}) \end{aligned}$	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563501 \end{aligned}$
	Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	$\begin{aligned} & \text { A8NE } \\ & \text { (SE) } \end{aligned}$	0	1	$\begin{aligned} & 430501 \\ & 563347 \end{aligned}$
	Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A8NE (E)	0	1	$\begin{aligned} & 430504 \\ & 563473 \end{aligned}$
	Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A7NE (W)	250	1	$\begin{aligned} & 430000 \\ & 563501 \end{aligned}$
	Radon Potential - Radon Affected Areas Affected Area: The property is in a lower probability radon area, as less than 1% of homes are above the action level Source: \quad British Geological Survey, National Geoscience Information Service	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$
	Radon Potential - Radon Protection Measures Protection Measure: No radon protective measures are necessary in the construction of new dwellings or extensions Source: British Geological Survey, National Geoscience Information Service	A8NW (SW)	0	1	$\begin{aligned} & 430399 \\ & 563501 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
75	Contemporary Trade Directory Entries Name: Trench (Uk) Ltd Location: South Drive, Hebburn, Tyne and Wear, NE31 1UW Classification: Transformer Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	A13SW (N)	0	-	$\begin{aligned} & 430361 \\ & 563617 \end{aligned}$
76	Contemporary Trade Directory Entries	A8NE (S)	7	-	$\begin{aligned} & 430432 \\ & 563259 \end{aligned}$
76	Contemporary Trade Directory Entries Name: Northeast Thermocouple Sensors Location: Unit 14c, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Thermometers \& Thermostats Status: Active Positional Accuracy: Automatically positioned to the address	A8NE (S)	9	-	$\begin{aligned} & 430470 \\ & 563252 \end{aligned}$
77	Contemporary Trade Directory Entries Name: Barkston Location: 3c-3d, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Plastics - Welding Status: Active Positional Accuracy: Automatically positioned to the address	A8NW (SW)	16	-	$\begin{aligned} & 430303 \\ & 563310 \end{aligned}$
78	Contemporary Trade Directory Entries Name: Victoria Coatings Location: Unit 11a-11b, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Powder Coatings Status: Inactive Positional Accuracy: Automatically positioned to the address	A8NW (S)	26	-	$\begin{aligned} & 430322 \\ & 563255 \end{aligned}$
78	Contemporary Trade Directory Entries Name: Automation \& Security Location: Unit 11c, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Automation Systems \& Equipment Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8NW } \\ & (\mathrm{S}) \end{aligned}$	28	-	$\begin{aligned} & 430343 \\ & 563250 \end{aligned}$
78	Contemporary Trade Directory Entries Name: Durham Filtration Engineers Ltd Location: Unit 2, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Filter Manufacturers \& Suppliers Status: Inactive Positional Accuracy: Automatically positioned to the address	A8NW (S)	74	-	$\begin{aligned} & 430322 \\ & 563206 \end{aligned}$
78	Contemporary Trade Directory Entries Name: Mcnulty Boats Ltd Location: Unit 7, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Boatbuilders \& Repairers Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	A8NW (S)	82	-	$\begin{aligned} & 430330 \\ & 563197 \end{aligned}$
78	Contemporary Trade Directory Entries Name: T S B Precision Engineering Ltd Location: Unit 6, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Engineers - General Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	$\begin{aligned} & \text { A8NW } \\ & \text { (S) } \end{aligned}$	82	-	$\begin{aligned} & 430330 \\ & 563197 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Kenneth James Ltd Location: 11d, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Packaging \& Wrapping Equipment \& Supplies Status: Active Positional Accuracy: Automatically positioned to the address	A8NW (S)	28	-	$\begin{aligned} & 430354 \\ & 563248 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
79	Contemporary Trade Directory Entries Name: Crest Security Location: Unit 11d, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Safes \& Vaults - Suppliers \& Installers Status: Inactive Positional Accuracy: Automatically positioned to the address	A8NW (S)	28	-	$\begin{aligned} & 430354 \\ & 563248 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Star Centre Location: Unit 10 Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne And Wear, NE31 1UB Classification: Disability Equipment - Manufacturers \& Suppliers Status: Active Positional Accuracy: Manually positioned within the geographical locality	A8NW (S)	30	-	$\begin{aligned} & 430367 \\ & 563245 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Mattei Compressors Ltd Location: Unit 12c, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Air Compressors Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8NW } \\ & \text { (S) } \end{aligned}$	30	-	$\begin{aligned} & 430385 \\ & 563242 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Electrical Industrial Accessories Ltd Location: Unit 12a, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Power Transmission Equipment Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8NW } \\ & \text { (S) } \end{aligned}$	30	-	$\begin{aligned} & 430367 \\ & 563245 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Northrop Grumman Sperry Marine Location: Unit 12C,Victoria Ind Est,Victoria Rd West, Hebburn, Tyne and Wear, NE31 1UB Classification: Marine Electrical \& Electronic Equipment Manufacturers Status: Inactive Positional Accuracy: Manually positioned to the address or location	$\begin{aligned} & \text { A8NW } \\ & \text { (S) } \end{aligned}$	30	-	$\begin{aligned} & 430384 \\ & 563242 \end{aligned}$
79	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A8NW } \\ & \text { (S) } \end{aligned}$	30	-	$\begin{aligned} & 430367 \\ & 563245 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Mashamoto Location: Unit 8a-C,Victoria Ind Est, Victoria Rd West, Hebburn, Tyne And Wear, NE31 1UB Classification: Car Body Repairs Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	A8NW (S)	30	-	$\begin{aligned} & 430367 \\ & 563245 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Tyne Autogas Location: Unit 12/A, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Autogas Suppliers \& Installers Status: Inactive Positional Accuracy: Manually positioned to the address or location	A8NW (S)	30	-	$\begin{aligned} & 430367 \\ & 563245 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Deep Star Subsea Location: Unit 15 Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne And Wear, NE31 1 UB Classification: Oil \& Gas Exploration Supplies \& Services Status: Active Positional Accuracy: Manually positioned within the geographical locality	A8NW (S)	31	-	$\begin{aligned} & 430379 \\ & 563242 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Valve \& Fitting Solutions Location: Unit 13a,Victoria Ind Est, Victoria Rd West, Hebburn, Tyne And Wear, NE31 1UB Classification: Valve Manufacturers \& Suppliers Status: Inactive Positional Accuracy: Manually positioned to the address or location	A8NW (S)	31	-	$\begin{aligned} & 430406 \\ & 563238 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
79	Contemporary Trade Directory Entries Name: Tinted Vison Location: 13a, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Window Tinting Status: Inactive Positional Accuracy: Automatically positioned to the address	A8NW (S)	31	-	$\begin{aligned} & 430406 \\ & 563238 \end{aligned}$
79	Contemporary Trade Directory Entries Name: Victoria Metail Works Location: Unit AC ,Victoria Industrial Estate,Victoria Rd West, Hebburn, Tyne and Wear, NE31 1UB Classification: Sheet Metal Work Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	A8NW (S)	43	-	$\begin{aligned} & 430366 \\ & 563232 \end{aligned}$
80	Contemporary Trade Directory Entries	A8NE (E)	57	-	$\begin{aligned} & 430599 \\ & 563456 \end{aligned}$
81	Contemporary Trade Directory Entries	A8NE (S)	76	-	$\begin{aligned} & 430426 \\ & 563190 \end{aligned}$
81	Contemporary Trade Directory Entries Name: Oak Engineering Co Ltd Location: Unit 7, 1, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Precision Engineers Status: Active Positional Accuracy: Automatically positioned to the address	A8NE (S)	76	-	$\begin{aligned} & 430426 \\ & 563190 \end{aligned}$
81	Contemporary Trade Directory Entries Name: Alfa Windows Ltd Location: Unit 7, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Window Frame Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	A8NE (S)	76	-	$\begin{aligned} & 430426 \\ & 563190 \end{aligned}$
82	Contemporary Trade Directory Entries Name: Glenray Garage Location: Unit 9f, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE311 1UB Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8NW } \\ & \text { (SW) } \end{aligned}$	120	-	$\begin{aligned} & 430239 \\ & 563201 \end{aligned}$
82	Contemporary Trade Directory Entries Name: Abbey Joinery Northeast Location: Unit 9D,Victoria Ind Est,Victoria Rd West, Hebburn, Tyne and Wear, NE31 1UB Classification: Joinery Manufacturers Status: Inactive Positional Accuracy: Manually positioned to the address or location	A8NW (SW)	132	-	$\begin{aligned} & 430236 \\ & 563186 \end{aligned}$
82	Contemporary Trade Directory Entries Name: High Spec Fabrications Location: Unit 9A,Victoria Ind Est,Victoria Rd West, Hebburn, Tyne and Wear, NE31 1UB Classification: PVC-U Products - Manufacturers \& Suppliers Status: Inactive Positional Accuracy: Manually positioned to the address or location	$\begin{aligned} & \text { A8SW } \\ & \text { (SW) } \end{aligned}$	151	-	$\begin{aligned} & 430230 \\ & 563166 \end{aligned}$
83	Contemporary Trade Directory Entries Name: Select A Panel Location: Unit 8f, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Control Panel Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	143	-	$\begin{aligned} & 430301 \\ & 563140 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
83	Contemporary Trade Directory Entries	A8SW (S)	143	-	$\begin{aligned} & 430301 \\ & 563140 \end{aligned}$
83	Contemporary Trade Directory Entries Name: Prima Ceramica Location: Unit 8i-8j, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Ceramic Manufacturers, Supplies \& Services Status: Inactive Positional Accuracy: Automatically positioned to the address	A8SW (S)	145	-	$\begin{aligned} & 430282 \\ & 563143 \end{aligned}$
83	Contemporary Trade Directory Entries Name: D \& E Autos Location: Unit 8i-8j, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UB Classification: Garage Services Status: Inactive Positional Accuracy: Manually positioned to the address or location	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	145	-	$\begin{aligned} & 430282 \\ & 563143 \end{aligned}$
83	Contemporary Trade Directory Entries Name: Dd Racing Location: 8i, Victoria Industrial Estate, Victoria Road West, Hebburn, Tyne and Wear, NE31 UB Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address 4	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	145	-	$\begin{aligned} & 430282 \\ & 563143 \end{aligned}$
84	Contemporary Trade Directory Entries	$\begin{gathered} \text { A8SE } \\ (\mathrm{S}) \end{gathered}$	161	-	$\begin{aligned} & 430524 \\ & 563097 \end{aligned}$
85	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A8SE } \\ & \text { (SE) } \end{aligned}$	188	-	$\begin{aligned} & 430669 \\ & 563170 \end{aligned}$
86	Contemporary Trade Directory Entries Name: Save Service Station Location: Fire Station Houses, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UD Classification: Petrol Filling Stations Status: Inactive Positional Accuracy: Automatically positioned to the address	A8SE (S)	220	-	$\begin{aligned} & 430412 \\ & 563046 \end{aligned}$
86	Contemporary Trade Directory Entries Name: Shield Motor Co Location: Fire Station Houses, Victoria Road West, HEBBURN, Tyne and Wear, NE31 1UD Classification: Car Dealers Status: Active Positional Accuracy:	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	251	-	$\begin{aligned} & 430403 \\ & 563017 \end{aligned}$
86	Contemporary Trade Directory Entries Name: Victoria Location: Victoria Garage, Fire Station Houses, Victoria Road West, Hebburn, Tyne and Wear, NE31 1UD Classification: Powder Coatings Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	251	-	$\begin{aligned} & 430403 \\ & 563017 \end{aligned}$
87	Contemporary Trade Directory Entries	A13NE (N)	333	-	$\begin{aligned} & 430486 \\ & 564072 \end{aligned}$
87	Contemporary Trade Directory Entries	A13NE (N)	333	-	$\begin{aligned} & 430486 \\ & 564072 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
88	Contemporary Trade Directory Entries	A13NE (NE)	369	-	$\begin{aligned} & 430686 \\ & 564002 \end{aligned}$
89	Contemporary Trade Directory Entries	A13NW (N)	383	-	$\begin{aligned} & 430375 \\ & 564150 \end{aligned}$
90	Contemporary Trade Directory Entries	A13NE (NE)	421	-	$\begin{aligned} & 430664 \\ & 564089 \end{aligned}$
91	Contemporary Trade Directory Entries Name: Glenn Mcintosh, Authorised Distributor For The Utility Warehouse Discount Club Location: 4, Alfred Street, Hebburn, Tyne and Wear, NE31 1LZ Classification: Gas Suppliers Status: Inactive Positional Accuracy: Automatically positioned to the address	A13NE (NE)	471	-	$\begin{aligned} & 430669 \\ & 564145 \end{aligned}$
92	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A7SE } \\ & \text { (SW) } \end{aligned}$	500	-	$\begin{aligned} & 429910 \\ & 562970 \end{aligned}$
93	Contemporary Trade Directory Entries	A18SE (N)	542	-	$\begin{aligned} & 430524 \\ & 564278 \end{aligned}$
94	Contemporary Trade Directory Entries	A2NE (SW)	560	-	$\begin{aligned} & 430045 \\ & 562797 \end{aligned}$
95	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A9SW } \\ & \text { (SE) } \end{aligned}$	579	-	$\begin{aligned} & 430971 \\ & 562916 \end{aligned}$
96	Contemporary Trade Directory Entries	A12NE (NW)	604	-	$\begin{aligned} & 429745 \\ & 563949 \end{aligned}$
97	Contemporary Trade Directory Entries	A2NE (SW)	608	-	$\begin{aligned} & 429982 \\ & 562780 \end{aligned}$
98	Contemporary Trade Directory Entries	A18SE (N)	622	-	$\begin{aligned} & 430571 \\ & 564348 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
99	Contemporary Trade Directory Entries	A12SW (NW)	654	-	$\begin{aligned} & 429672 \\ & 563849 \end{aligned}$
100	Contemporary Trade Directory Entries	A18SE (N)	671	-	$\begin{aligned} & 430593 \\ & 564394 \end{aligned}$
101	Contemporary Trade Directory Entries	A12SW (W)	680	-	$\begin{aligned} & 429624 \\ & 563704 \end{aligned}$
102	Contemporary Trade Directory Entries	A12SW (W)	680	-	$\begin{aligned} & 429614 \\ & 563655 \end{aligned}$
103	Contemporary Trade Directory Entries	A12SW (W)	681	-	$\begin{aligned} & 429635 \\ & 563791 \end{aligned}$
104	Contemporary Trade Directory Entries	A18SE (N)	703	-	$\begin{aligned} & 430645 \\ & 564412 \end{aligned}$
105	Contemporary Trade Directory Entries Name: Mill Lane Service Station Location: Mill Lane, Hebburn, Tyne and Wear, NE31 2EU Classification: Petrol Filling Stations Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A9SE } \\ & \text { (SE) } \end{aligned}$	704	-	$\begin{aligned} & 431086 \\ & 562862 \end{aligned}$
106	Contemporary Trade Directory Entries	A19SW (NE)	735	-	$\begin{aligned} & 430880 \\ & 564319 \end{aligned}$
107	Contemporary Trade Directory Entries	A12NW (NW)	737	-	$\begin{aligned} & 429618 \\ & 563990 \end{aligned}$
107	Contemporary Trade Directory Entries	A12NW (NW)	739	-	$\begin{aligned} & 429618 \\ & 563994 \end{aligned}$
108	Contemporary Trade Directory Entries	A12NW (NW)	738	-	$\begin{aligned} & 429648 \\ & 564070 \end{aligned}$
109	Contemporary Trade Directory Entries	A18SE (N)	738	-	$\begin{aligned} & 430694 \\ & 564430 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
110	Contemporary Trade Directory Entries	A18SE (N)	740	-	$\begin{aligned} & 430485 \\ & 564492 \end{aligned}$
111	Contemporary Trade Directory Entries	A12SW (W)	750	-	$\begin{aligned} & 429524 \\ & 563549 \end{aligned}$
111	Contemporary Trade Directory Entries	A12SW (W)	784	-	$\begin{aligned} & 429487 \\ & 563528 \end{aligned}$
112	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	764	-	$\begin{aligned} & 429762 \\ & 564290 \end{aligned}$
113	Contemporary Trade Directory Entries Name: Bill Quay Auto Salvage Location: Drake St, Bill Quay, Gateshead, Tyne \& Wear, NE10 OUT Classification: Car Breakers \& Dismantlers Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	$\begin{aligned} & \text { A2NE } \\ & \text { (SW) } \end{aligned}$	765	-	$\begin{aligned} & 429756 \\ & 562752 \end{aligned}$
114	Contemporary Trade Directory Entries Name: Smiths Bros Location: 44, Glen Street, Hebburn, Tyne and Wear, NE31 1NU Classification: Printers Status: Active Positional Accuracy: Automatically positioned to the address	A18SE (N)	776	-	$\begin{aligned} & 430714 \\ & 564463 \end{aligned}$
114	Contemporary Trade Directory Entries Name: Smith Bros Location: 44, Glen Street, Hebburn, Tyne and Wear, NE31 1NU Classification: Printers Status: Active Positional Accuracy: Automatically positioned to the address	A18SE (N)	776	-	$\begin{aligned} & 430714 \\ & 564463 \end{aligned}$
114	Contemporary Trade Directory Entries Name: Smith Bros Location: 44, Glen Street, Hebburn, Tyne and Wear, NE31 1NU Classification: Printers Status: Inactive Positional Accuracy: Automatically positioned to the address	A18SE (N)	776	-	$\begin{aligned} & 430714 \\ & 564463 \end{aligned}$
114	Contemporary Trade Directory Entries Name: Glen Street Mot Ltd Location: 40, Glen Street, Hebburn, Tyne and Wear, NE31 1NU Classification: Mot Testing Centres Status: Inactive Positional Accuracy: Manually positioned to the address or location	A18SE (N)	788	-	$\begin{aligned} & 430721 \\ & 564473 \end{aligned}$
114	Contemporary Trade Directory Entries Name: A C Pillar Tools Location: Rear Of, Glen Street, Hebburn, Tyne and Wear, NE31 1NU Classification: Precision Engineers Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	A19SW (N)	816	-	$\begin{aligned} & 430745 \\ & 564493 \end{aligned}$
115	Contemporary Trade Directory Entries	$\begin{gathered} \text { A7SW } \\ (S W) \end{gathered}$	789	-	$\begin{aligned} & 429586 \\ & 562909 \end{aligned}$
116	Contemporary Trade Directory Entries	A17SW (NW)	790	-	$\begin{aligned} & 429658 \\ & 564198 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
117	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	792	-	$\begin{aligned} & 429779 \\ & 564348 \end{aligned}$
118	Contemporary Trade Directory Entries	A12NW (NW)	795	-	$\begin{aligned} & 429610 \\ & 564125 \end{aligned}$
119	Contemporary Trade Directory Entries	A7NW (W)	799	-	$\begin{aligned} & 429461 \\ & 563467 \end{aligned}$
119	Contemporary Trade Directory Entries Name: Wellstream Location: Unit 5, Walker Riverside, Wincomblee Road, Newcastle upon Tyne, Tyne and Wear, NE6 3PF Classification: Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	A7NW (W)	812	-	$\begin{aligned} & 429445 \\ & 563445 \end{aligned}$
120	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A2NE } \\ & \text { (SW) } \end{aligned}$	802	-	$\begin{aligned} & 429991 \\ & 562553 \end{aligned}$
121	Contemporary Trade Directory Entries Name: Watson Norie Ltd Location: Wincomblee Road, NEWCASTLE UPON TYNE, NE6 3PL Classification: Electrical Engineers Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SW (NW)	807	-	$\begin{aligned} & 429684 \\ & 564266 \end{aligned}$
122	Contemporary Trade Directory Entries	A19SW (NE)	853	-	$\begin{aligned} & 430965 \\ & 564402 \end{aligned}$
123	Contemporary Trade Directory Entries Name: Bill Quay Auto Care Location: Unit 1 Bill Quay Indust Est, Gateshead, Tyne \& Wear, NE10 0SQ Classification: Garage Services Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	$\begin{aligned} & \text { A7SW } \\ & \text { (SW) } \end{aligned}$	884	-	$\begin{aligned} & 429512 \\ & 562849 \end{aligned}$
124	Contemporary Trade Directory Entries Name: Singleton Metalworks Ltd Location: Shop 7 Block C,Wincomblee Road, Newcastle upon Tyne, Tyne And Wear, NE6 3QS Classification: Metal Products - Fabricated Status: Active Positional Accuracy: Manually positioned within the geographical locality	$\begin{aligned} & \text { A17SE } \\ & \text { (NW) } \end{aligned}$	886	-	$\begin{aligned} & 429732 \\ & 564431 \end{aligned}$
125	Contemporary Trade Directory Entries	A17SW (NW)	890	-	$\begin{aligned} & 429655 \\ & 564360 \end{aligned}$
125	Contemporary Trade Directory Entries	A17SW (NW)	912	-	$\begin{aligned} & 429663 \\ & 564402 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
125	Contemporary Trade Directory Entries	A17SW (NW)	912	-	$\begin{aligned} & 429663 \\ & 564402 \end{aligned}$
126	Contemporary Trade Directory Entries	A19NW (NE)	894	-	$\begin{aligned} & 430841 \\ & 564534 \end{aligned}$
127	Contemporary Trade Directory Entries Name: Jebb Metals Ltd Location: Station Road, Walker, Newcastle upon Tyne, NE6 3PN Classification: Scrap Metal Merchants Status: Active Positional Accuracy: Automatically positioned to the address	A12NW (NW)	921	-	$\begin{aligned} & 429472 \\ & 564123 \end{aligned}$
127	Contemporary Trade Directory Entries	A12NW (NW)	933	-	$\begin{aligned} & 429456 \\ & 564118 \end{aligned}$
128	Contemporary Trade Directory Entries	A17SW (NW)	927	-	$\begin{aligned} & 429511 \\ & 564219 \end{aligned}$
129	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A9SE } \\ & \text { (SE) } \end{aligned}$	931	-	$\begin{aligned} & 431340 \\ & 562851 \end{aligned}$
130	Contemporary Trade Directory Entries	A12NW (NW)	931	-	$\begin{aligned} & 429428 \\ & 564030 \end{aligned}$
130	Contemporary Trade Directory Entries	A12NW (NW)	945	-	$\begin{aligned} & 429418 \\ & 564049 \end{aligned}$
131	Contemporary Trade Directory Entries Name: Express Cleaning Location: 14, Severn Avenue, Hebburn, Tyne and Wear, NE31 2JJ Classification: Carpet, Curtain \& Upholstery Cleaners Status: Active Positional	A10NW (E)	940	-	$\begin{aligned} & 431458 \\ & 563254 \end{aligned}$
132	Contemporary Trade Directory Entries	A17SW (NW)	941	-	$\begin{aligned} & 429616 \\ & 564393 \end{aligned}$
133	Contemporary Trade Directory Entries	A17SW (NW)	947	-	$\begin{aligned} & 429624 \\ & 564411 \end{aligned}$
133	Contemporary Trade Directory Entries	A17SW (NW)	952	-	$\begin{aligned} & 429628 \\ & 564422 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
133	Contemporary Trade Directory Entries Name: A1 Venetian Blinds Ltd Location: Unit 2,10,Wincomblee Workshops, White St, Newcastle upon Tyne, Tyne and Wear, NE6 3PJ Classification: Blinds, Awnings \& Canopies Status: Inactive Positional Accuracy: Manually positioned to the road within the address or location	A17SW (NW)	953	-	$\begin{aligned} & 429630 \\ & 564426 \end{aligned}$
133	Contemporary Trade Directory Entries Name: Willow Tree Country Kitchens Location: Unit 11, Wincomblee Workshops, White Street, NEWCASTLE UPON TYNE, NE6 3PJ Classification: Food Products - Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SW (NW)	982	-	$\begin{aligned} & 429616 \\ & 564453 \end{aligned}$
133	Contemporary Trade Directory Entries	A17SW (NW)	982	-	$\begin{aligned} & 429616 \\ & 564453 \end{aligned}$
133	Contemporary Trade Directory Entries Name: Custom Print Location: Unit 7, Wincomblee Workshops, White Street, NEWCASTLE UPON TYNE, NE6 3PJ Classification: Printers Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SW (NW)	982	-	$\begin{aligned} & 429616 \\ & 564453 \end{aligned}$
134	Contemporary Trade Directory Entries	A2NW (SW)	953	-	$\begin{aligned} & 429631 \\ & 562611 \end{aligned}$
135	Contemporary Trade Directory Entries	A11SE (W)	956	-	$\begin{aligned} & 429354 \\ & 563771 \end{aligned}$
136	Contemporary Trade Directory Entries Name: United Flexo Supplies Ltd Location: Rhodes Street, Walker, Newcastle upon Tyne, NE6 3LZ Classification: Tapes - Industrial Status: Active Positional Accuracy: Automatically positioned to the address	A17SW (NW)	965	-	$\begin{aligned} & 429469 \\ & 564221 \end{aligned}$
136	Contemporary Trade Directory Entries	A17SW (NW)	976	-	$\begin{aligned} & 429481 \\ & 564266 \end{aligned}$
137	Contemporary Trade Directory Entries Name: Sunkisst Location: 3 Parkside House Station Road, Bill Quay, Gateshead, Tyne And Wear, NE10 ORS Classification: Commercial Cleaning Services Status: Inactive Positional Accuracy: Manually positioned within the geographical locality 9	A2NW (SW)	970	-	$\begin{aligned} & 429659 \\ & 562567 \end{aligned}$
138	Contemporary Trade Directory Entries Name: A Richardson Location: Fairfield Industrial Park, Bill Quay, Gateshead, Tyne and Wear, NE10 OUR Classification: Packaging \& Wrapping Equipment \& Supplies Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	A6SE (SW)	981	-	$\begin{aligned} & 429379 \\ & 562885 \end{aligned}$
139	Contemporary Trade Directory Entries	A18NE (N)	988	-	$\begin{aligned} & 430727 \\ & 564684 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
140	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	1000	-	$\begin{aligned} & 429335 \\ & 562932 \end{aligned}$
140	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	1000	-	$\begin{aligned} & 429335 \\ & 562932 \end{aligned}$
140	Contemporary Trade Directory Entries Name: David Huddart Location: 14a, Fairfield Industrial Park, Bill Quay, Gateshead, Tyne and Wear, NE10 OUR Classification: Joinery Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	1000	-	$\begin{aligned} & 429335 \\ & 562932 \end{aligned}$
140	Contemporary Trade Directory Entries	$\begin{aligned} & \text { A6SE } \\ & \text { (SW) } \end{aligned}$	1000	-	$\begin{aligned} & 429335 \\ & 562932 \end{aligned}$
141	Contemporary Trade Directory Entries	A17SW (NW)	1000	-	$\begin{aligned} & 429417 \\ & 564196 \end{aligned}$
142	Fuel Station Entries	A13NE (NE)	369	-	$\begin{aligned} & 430686 \\ & 564002 \end{aligned}$
143	Fuel Station Entries	$\begin{aligned} & \text { A9SE } \\ & \text { (SE) } \end{aligned}$	705	-	$\begin{aligned} & 431086 \\ & 562862 \end{aligned}$

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
144	Areas of Adopted Green Belt	$\begin{aligned} & \text { A8SW } \\ & \text { (S) } \end{aligned}$	336	6	$\begin{aligned} & 430367 \\ & 562936 \end{aligned}$
145	Areas of Adopted Green Belt	A3NE (S)	554	7	$\begin{aligned} & 430432 \\ & 562707 \end{aligned}$
146	Areas of Unadopted Green Belt	A3NE (S)	555	7	$\begin{aligned} & 430433 \\ & 562706 \end{aligned}$
147	Local Nature Reserves	A4NW (SE)	584	9	$\begin{aligned} & 430906 \\ & 562834 \end{aligned}$

Agency \& Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices South Tyneside Metropolitan Borough Council - Neighbourhood Services Gateshead Metropolitan Borough Council - Environmental Health Department North Tyneside Metropolitan Borough Council - Environmental Health Department Sunderland City Metropolitan Borough Council - Environmental Health Department City of Newcastle upon Tyne Council - Environmental Health Department	December 2014 July 2013 March 2015 March 2015 October 2014	Annual Rolling Update Annual Rolling Update Annual Rolling Update Annually Annual Rolling Update
Discharge Consents Environment Agency - North East Region	April 2016	Quarterly
Enforcement and Prohibition Notices Environment Agency - North East Region	March 2013	As notified
Integrated Pollution Controls Environment Agency - North East Region	October 2008	Not Applicable
Integrated Pollution Prevention And Control Environment Agency - North East Region	April 2016	Quarterly
Local Authority Integrated Pollution Prevention And Control North Tyneside Metropolitan Borough Council - Environmental Health Department Gateshead Metropolitan Borough Council - Environmental Health Department City of Newcastle upon Tyne Council - Environmental Health Department Sunderland City Metropolitan Borough Council - Environmental Health Department South Tyneside Metropolitan Borough Council - Environmental Health Department	April 2014 February 2013 June 2013 May 2016 September 2012	Annual Rolling Update
Local Authority Pollution Prevention and Controls North Tyneside Metropolitan Borough Council - Environmental Health Department City of Newcastle upon Tyne Council - Environmental Health Department Sunderland City Metropolitan Borough Council - Environmental Health Department Gateshead Metropolitan Borough Council - Environmental Health Department South Tyneside Metropolitan Borough Council - Environmental Health Department	April 2014 January 2015 May 2016 October 2014 September 2012	Annual Rolling Update
Local Authority Pollution Prevention and Control Enforcements North Tyneside Metropolitan Borough Council - Environmental Health Department City of Newcastle upon Tyne Council - Environmental Health Department Sunderland City Metropolitan Borough Council - Environmental Health Department Gateshead Metropolitan Borough Council - Environmental Health Department South Tyneside Metropolitan Borough Council - Environmental Health Department	April 2014 January 2015 May 2016 October 2014 September 2012	Annual Rolling Update
Nearest Surface Water Feature Ordnance Survey	July 2012	Quarterly
Pollution Incidents to Controlled Waters Environment Agency - North East Region	December 1998	Not Applicable
Prosecutions Relating to Authorised Processes Environment Agency - North East Region	March 2013	As notified
Prosecutions Relating to Controlled Waters Environment Agency - North East Region	March 2013	As notified
Registered Radioactive Substances Scottish Environment Protection Agency - Head Office	January 1998	Not Applicable
River Quality Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points Environment Agency - Head Office	July 2012	Annually
River Quality Chemistry Sampling Points Environment Agency - Head Office	July 2012	Annually
Substantiated Pollution Incident Register Environment Agency - North East Region - North East Area Environment Agency - North East Region - Northumbria Area	April 2016 April 2016	Quarterly Quarterly

Agency \& Hydrological	Version	Update Cycle
Water Abstractions Environment Agency - North East Region	April 2016	Quarterly
Water Industry Act Referrals Environment Agency - North East Region	April 2016	Quarterly
Groundwater Vulnerability Environment Agency - Head Office	April 2015	Not Applicable
Drift Deposits Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations British Geological Survey - National Geoscience Information Service	August 2015	August 2015 notified
Superficial Aquifer Designations British Geological Survey - National Geoscience Information Service	April 2016	As notified
Source Protection Zones Environment Agency - Head Office	February 2016	Quarterly
Extreme Flooding from Rivers or Sea without Defences Environment Agency - Head Office	February 2016	Quarterly
Flooding from Rivers or Sea without Defences Environment Agency - Head Office	February 2016	Quarterly
Areas Benefiting from Flood Defences Environment Agency - Head Office	February 2016	Quarterly
Flood Water Storage Areas Environment Agency - Head Office	February 2016	Quarterly
Flood Defences Environment Agency - Head Office	March 2012	Quarterly
Detailed River Network Lines 2012 Environment Agency - Head Office	Annually	
Detailed River Network Offline Drainage Environment Agency - Head Office	Annually	
BGs Groundwater Flooding Susceptibility British Geological Survey - National Geoscience Information Service	Annually	

Waste	Version	Update Cycle
BGs Recorded Landfill Sites British Geological Survey - National Geoscience Information Service		
Historical Landfill Sites Environment Agency - Head Office	June 1996	Not Applicable
Integrated Pollution Control Registered Waste Sites Environment Agency - North East Region	May 2016	Quarterly
Licensed Waste Management Facilities (Landfill Boundaries) Environment Agency - North East Region - North East Area Environment Agency - North East Region - Northumbria Area	October 2008	Not Applicable
Licensed Waste Management Facilities (Locations) Environment Agency - North East Region - North East Area Environment Agency - North East Region - Northumbria Area	May 2016	May 2016

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology British Geological Survey - National Geoscience Information Service	January 2009	Not Applicable
BGS Recorded Mineral Sites British Geological Survey - National Geoscience Information Service	May 2016	Bi-Annually
Brine Compensation Area Cheshire Brine Subsidence Compensation Board	August 2011	Not Applicable
Coal Mining Affected Areas The Coal Authority - Property Searches	March 2014	As notified
Mining Instability Ove Arup \& Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Compressible Ground Stability Hazards British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Ground Dissolution Stability Hazards British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Landslide Ground Stability Hazards British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Running Sand Ground Stability Hazards British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Shrinking or Swelling Clay Ground Stability Hazards British Geological Survey - National Geoscience Information Service	July 2011	Auly 2011

Sensitive Land Use	Version	Update Cycle
Ancient Woodland Natural England	June 2015	Bi-Annually
Areas of Adopted Green Belt City of Newcastle upon Tyne Council Gateshead Metropolitan Borough Council - Development Control North Tyneside Metropolitan Borough Council South Tyneside Metropolitan Borough Council - Planning Department Sunderland City Metropolitan Borough Council - Planning	May 2016 May 2016 May 2016 May 2016 May 2016	As notified As notified As notified As notified As notified
Areas of Unadopted Green Belt City of Newcastle upon Tyne Council Gateshead Metropolitan Borough Council - Development Control North Tyneside Metropolitan Borough Council South Tyneside Metropolitan Borough Council - Planning Department Sunderland City Metropolitan Borough Council - Planning	November 2015 November 2015 November 2015 November 2015 November 2015	As notified As notified As notified As notified As notified
Areas of Outstanding Natural Beauty Natural England	April 2016	Bi-Annually
Environmentally Sensitive Areas Natural England	April 2016	Annually
Forest Parks Forestry Commission	April 1997	Not Applicable
Local Nature Reserves Natural England	April 2016	Bi-Annually
Marine Nature Reserves Natural England	April 2016	Bi-Annually
National Nature Reserves Natural England	April 2016	Bi-Annually
National Parks Natural England	March 2016	Bi-Annually
Nitrate Sensitive Areas Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	April 2016	Not Applicable
Nitrate Vulnerable Zones Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	October 2015	Annually
Ramsar Sites Natural England	April 2016	Bi-Annually
Sites of Special Scientific Interest Natural England	April 2016	Bi-Annually
Special Areas of Conservation Natural England	April 2016	Bi-Annually
Special Protection Areas Natural England	April 2016	Bi-Annually
World Heritage Sites English Heritage - National Monument Record Centre	September 2015	Bi-Annually

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	(8980
Environment Agency	Environment Agency
Scottish Environment Protection Agency	$S E P \widetilde{\hat{A}}$
The Coal Authority	THE COAL AUTHORITY
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	
Natural Resources Wales	
Scottish Natural Heritage	
Natural England	ENGLAND
Public Health England	笖 Public Health England
Ove Arup	$A P T D$
Peter Brett Associates	Peterbett

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 01159363143 Fax: 01159363276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708506506 Email: enquiries@environment-agency.gov.uk
3	South Tyneside Metropolitan Borough Council Environmental Health Department Central Library Building, Prince George Square, South Shields, Tyne And Wear, NE33 2PE	Telephone: 01914271717 Fax: 01914277171 Website: www.s-tyneside-mbc.gov.uk
4	City of Newcastle upon Tyne Council - Environmental Health Department Civic Centre, Barras Bridge, Newcastle-upon-tyne, Tyne And Wear, NE1 8PB	Telephone: 01912328520 Fax: 01912114962 Email: phep@newcastle.gov.uk Website: www.newcastle.gov.uk
5	Scottish Environment Protection Agency - Head Office Erskine Court, The Castle Business Park, Stirling, Stirlingshire, FK9 4TR	$\begin{aligned} & \text { Telephone: } 01786457700 \\ & \text { Fax: } 01786446885 \end{aligned}$
6	South Tyneside Metropolitan Borough Council Planning Department Town Hall \& Civic Offices, Westoe Road, South Shields, Tyne \& Wear, NE33 2RL	Telephone: 01914271717 Fax: 01914277171 Website: www.s-tyneside-mbc.gov.uk
7	Gateshead Metropolitan Borough Council Development Control Civic Centre, Regent Street, Gateshead, Tyne \& Wear, NE8 1HH	Telephone: 01914771011 Fax: 01914783495 Website: www.gateshead.gov.uk
8	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 03457626848 Fax: 01623637338 Email: groundstability@coal.gov.uk
9	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 03000603900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
10	English Heritage - National Monument Record Centre Kemble Drive, Swindon, Wiltshire, SN2 2GZ	Telephone: 01793414600 Fax: 01793414606 Email: nmrinfo@english-heritage.org.uk Website: www.english-heritage.org.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 ORQ	Telephone: 01235822622 Fax: 01235833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 08448449952 Fax: 08448449951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

[^2]

Geology 1:50,000 Maps Legends
Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	MGR	Made Ground (Undivided)	Artificial Deposit	Holocene - Holocene

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	SUPNM	Superficial Theme Not Mapped [For Digital Map Use Only]	Unknown/Unclassif ied Entry	Not Supplied - Not Supplied
	ALD	Alluvium	Clay, Silt, Sand and Gravel	Flandrian - Flandrian
	PELC	Pelaw Clay Member	Clay	Devensian - Devensian
	GLLDD	Glaciolacustrine Deposits, Devensian	Clay and Silt	Devensian - Devensian
	TILED	Till, Devensian	Diamicton	Devensian - Devensian
	GFDUD	Glaciofluvial Deposits, Devensian	Sand and Gravel	Devensian - Devensian

Bedrock and Faults
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Map } \\
\text { Colour }\end{array} & \text { Lex Code } & \text { Rock Name } & \text { Rock Type } & \text { Min and Max Age } \\
\hline & \text { HBDY } & \text { Hebburn Dyke } & \text { Microgabbro } & \begin{array}{c}\text { Palaeogene - } \\
\text { Palaeogene }\end{array} \\
\hline & \text { GNP } & \text { Grindstone Post Member } & \text { Sandstone } & \begin{array}{c}\text { Bolsovian - } \\
\text { Bolsovian }\end{array} \\
\hline & \text { PMCM } & \begin{array}{c}\text { Pennine Middle Coal } \\
\text { Measures Formation }\end{array} & \begin{array}{c}\text { Mudstone, } \\
\text { Siltstone and } \\
\text { Sandstone }\end{array} & \begin{array}{c}\text { Bolsovian - } \\
\text { Duckmantian }\end{array} \\
\hline & \text { SEP } & \begin{array}{c}\text { Pennine Middle Coal } \\
\text { Measures Formation }\end{array} & \begin{array}{c}\text { Sandstone }\end{array} & \begin{array}{c}\text { Bolsovian - } \\
\text { Duckmantian }\end{array} \\
\hline & & \text { Rock Segments } & \text { Fathom Post } & \text { Sandstone }\end{array}
$$ \begin{array}{c}Duckmantian -

Duckmantian\end{array}\right]\)

sirf̛̀us

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital
Geological map of Great Britain at $1: 50,000$ scale and is designed for Geological map of Great Britain at $1: 50,000$ scale and is designed for users
carrying out preliminary site assessments who require geological maps for carrying out preliminary site assessments who require geological maps
the area around the site. This mapping may be more up to date than previously published paper maps.
The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps but geology and solid (bedrock' geology are displayed in separate maps, but
superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below. Geology 1:50,000 Maps Coverage
 1
ort
Sunderland
197elabl
Avaliabe
Avaliabe
Avaliabe
Not supplied
Available
Not supplied

Geology 1:50,000 Maps - Slice A

Order Details:
Order Number: $\quad 9050561411$
Customer Reference: Slice:
Site Area (Ha):

> 90505614_1_1 C7074/Former Siemens Factory, Hebburn/CR 430400,563500

Site Area (Ha):
Search Buffer (m) :
10.3
1000

Site Details:
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

	Quarry	\%acose	Gravel Pit		$\underset{\text { Pit }}{\text { Sand }}$
	Clay Pit	6	Shingle	\%	Refus Heap

-- County Boundary (Geographical)
-. -. County \& Civil Parish Boundary
++++ Administrative County \& Civil Parish Boundary
$\overline{\text { Co. Boro. }}$ Bdy. County Borough Boundary (England)
$\overline{\text { Co. Burgh Bdy }}$ County Burgh Boundary (Scotland)

${ }_{B P}{ }_{B S}$ S	Boundary Postor Stone	p.c. B	Police Call Box
b.R.	Bride Road	P	Pump
E.P	Electricity Pyion	S. ${ }^{\text {P }}$	Signal Post
B.	Foot Sridge	St	Sluice
F.P.	FootPath	$s p$.	Spring
G.P	Guide Postor Board	r.c. B	Telephone Call Box
${ }_{\text {M }} . S$	Mile Stone	$T_{\text {r }}$	Trough
M. P	Mooring Postor	W	

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and Supply of Unpublished Survey Information $1: 2,500$ and 1:1,250

EIL Electricity Transmission Line

- — County Boundary (Geographical) - . - County \& Civil Parish Boundary

$\cdots \ldots \ldots \ldots$	Civil Parish Boundary
Admin. County or County Bor. Boundary	

вн	Beer House	P	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	po	Post office
Cn, C	Capstan, Crane	PC	Public Convenience
chy	Chimney	PH	Public House
DFn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	sb, sbr	Signal Box or Bridge
fap	Fire Alarm Pillar	sp, SL	Signal Postor Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
н	Hydrant or Hydraulic	tcb	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Postor Mooring Post	WrPt, WrT	Water Point, Water Tap
ms	Mile Stone	w	Well
NTL	Normal Tidal Limit	WdPp	Wind Pump

Bty	Battery	PO	Post Office
Cemy	Cemetery	PC	Public Convenience
chy	Chimney	Pp	Pump
Cis	Cistern	Ppg Sta	Pumping Station
Dismtd Rly	Dismanted Railway	Pw	Place ofWorship
El Gen Sta	Electricity Generating Station	Sewage Pid	$\begin{aligned} & \text { pg Sta } \\ & \text { Sewage } \\ & \text { Pumping Station } \end{aligned}$
EIP	Electricity Pole, Pillar	SB, SBr	Signal Box or Bridge
El Sub Sta	Electricity Sub Station	SP, SL	Signal PostorLig
FB	Filter Bed	Spr	Spring
Fn/DFn	Fountain / Dinking Ftn.	Tk	Tank orTrack
Gas Gov	Gas Valve Compound	Tr	Trough
gvc	Gas Governer	WdPp	Wind Pump
GP	Guide Post	WrPt, WrT	Water Point, W
MH	Manhole	wks	Works (bu

sirtus

Historical Mapping \& Photography included:

Mapping Type	Scale	Date	Pg
Durham	1:2,500	1857-1873	
Northumberland	1:2,500	1859	3
Northumberland	1:2,500	1861-1887	
Durham	1:2,500	1897	
Durham	1:2,500	1916	
Durham	1:2,500	1941	
Ordnance Survey Plan	1:1,250	1956-1957	8
Ordnance Survey Plan	1:2,500	1957	
Ordnance Survey Plan	1:1,250	1962-1983	10
Ordnance Survey Plan	1:2,500	1967-1968	11
Ordnance Survey Plan	1:1,250	1971-1986	12
Additional SIMs	1:1,250	1979-1991	13
Additional SIMs	1:1,250	1986	14
Large-Scale National Grid Data	1:1,250	1993	15
Large-Scale National Grid Data	1:1,250	1994	16

Historical Map - Segment A8

Order Details

 Order Numberg0505614

$$
\begin{array}{ll}
\text { Hebburn/CR } \\
\text { National Grid Reference: } 430400,563500
\end{array}
$$

Slice:
Search Buffer (m): $\quad 100$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31
Landmark

Northumberland
Published 1859
Source map scale - 1:2,500
The historical maps shown were reproducen from maps predominantly held
at the scale adopoted for England, Wales and Scotland in the 1840 ' s . 1 I 1854
 he $1: 2,500$ scale was adopted for mappoing urban areas and dy 1896 it
overed t the whole of what were considiered to be the cultivated darts of Grea Britain. The published date given below is often some years later than
ruveyed date. Beiore 1938 , all OS maps were based on the Cas surveyed date. Betore 1938 , all OS maps were based on the Cassini
Projection, with independent surveys of a single county or group of counties, giving rise to signiicant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A8

Order Details
Order Number:
Order Number:
Customer Ret:
90505614_1_1 C7074/Former Siemens Factory
National Grid Refere Hebburn/CR
Slice: : 430400, 563500
Slice:
Site Area $(\mathrm{Ha}):$ A
10.3

Search Buffer (m):

100

Search Burer (m):
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark
Landmark
A Landmark Information Group Service v49.0 08 -Jul-2016 Page 3 of 16

Northumberland
Published 1861-1887
Source map scale - 1:2,500 he historica maps shown were eperoduced from maps predominantly held
at the scole adopoted for England, Wales and Scotland in the 1840 s . In 1854 at the scale adopted for England, Wales and Scotland in the $1840{ }^{\circ}$ s. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it overed the whole of what were considereded to be the cultivated parts of Grea
cole
over Sritain. The published date given below is often some years later than
surveyed date. Beiore 1938 , all OS maps were based on the Cassini Prveeyed oate. Beiore 938 , al os maps were based on the Cassini
Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A8

Order Details
Order Number:
Customer Ref:
National Grid Referen
Slice:
Site Area (Ha): C7074/Former Siemens Factory Hebburn/CR

Search Buffer (m):
A
10.3
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark \qquad $\begin{array}{ll}\text { Tea: } \\ \text { Fax: } \\ \text { Web: } & \left.\begin{array}{l}0844849952 \\ 0844449995 \\ \end{array}\right)\end{array}$
A Landmark Information Group Service v49.0 08 -Jul-2016 Page 4 of 16

Durham
Published 1897
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{s}$. In 1854 at the scale adopted for England, Wales and Scotland in the $1840{ }^{\circ}$ s. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Grea
Britain The published date given below is often some years later than the Britian. The pubbished date given below is often some years later than
surveyed date. Beiore 1938 , al OS maps were based on the Cassini Projection, with independent surveys of a s single county or group of counties
giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Order Details

Order Number: Customer Ref:

905056141 1

 C7074/Former Siemens Factory Hebburn/CRNational Grid Reference: 430400, 563500
Slice: \quad A
Search Buffer (m): $\quad 100$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 Sieme
1 LX

Landmark

Durham
Published 1916
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly held
at the scale adopted tor England, Wales and Scotland in the 1840° s. In 1854 at the scale adopted for England, Wales and Scotland in the 1840 's. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Britian. The pubbished date given below is often some years later than
surveyed date. Beiore 1938 , al OS maps were based on the Cassini SProyection, with hindeependent surveys of a s single county or oroup of counties,
giving ise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Order Details
 Order Number:

 Customer Ref:
90505614_1_1

 C7074/Former Siemens Factory, Hebburn/CR430400,5635
National Grid Reference: 430400, 563500
Slice:
Site Area (Ha):
Search Buffer (m)
10.3
100

Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 Sieme
1LX

Landmark

A Landmark Information Group Service v49.0 08-Jul-2016 Page 6 of 16

sirtus

Durham
Published 1941
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{s}$. In 1854 at the e scala adopted or England, Wales and Scotiand in the 1840 s. s . it
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Grea
Britain. The published date given below is often some years later than the Strian. The pubished date given below is stier some years tater hhan
surveyed date. Before 938 , Projection, with indeependent surveys of a single county or group of counties
giving rise to significant inaccurracies in outlying areas.

[^3]Landmark

Ordnance Survey Plan
Published 1956-1957
Source map scale - 1:1,250
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{s}$. In 1854 at the scale adopted or tngland, , Wales and Scoitand in te 1840 s. 1 it
the $1: 2,500$ scale was adopped tor mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Grea
Britain. The published date given below is often some years later than the Bitiain. The pubbished date given below is often some years later than
Surveyed date. Beiore 1938 , al OS maps were based on the Cassini Projection with indeependent surveys of a single county or group of counties,
giving rise to significant inaccurracies in outlying areas.

Map Name(s) and Date(s)

$$
\begin{aligned}
& {\underset{c \mid c}{956}}_{\substack{1,1,250}}^{1957} \mid
\end{aligned}
$$

Historical Map - Segment A8

Order Details

Order Number

90505614_1_1 C7074/Former Siemens Factory
Hebburn/CR
Slice:-
Site Area (Ha):
A
10.3
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

sirtus

Ordnance Survey Plan
Published 1957
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the 1840° s. In 1854 at the scale adopted for England, Wales and Scotland in the 1840 's. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the surveyed date. Beofre 1938, al IOS maps were based on the Cassini Projection with indeependent surveys of a s single county or or group of counties,
giving rise to significant inaccurracies in outlying areas.

Order Details

Order Number

Slice: \quad A
Search Buffer (m): $\quad 100$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

sirtus

Ordnance Survey Plan
Published 1962-1983
Source map scale - 1:1,250
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{s}$. In 1854 at the scale adopted for England, Wales and Scotland in the 1840 's. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Britian. The pubbished date given below is often some years later than
surveyed date. Beiore 1938 , al OS maps were based on the Cassini Pryjection, with hindeendent surveys of a single county or group of counties
giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

$$
\begin{aligned}
& \text { 1,250 |:1,250 }
\end{aligned}
$$

Historical Map - Segment A8

Order Details

Order Number

90505614_1_1 C7074/Former Siemens Factory
Hebburn/CR
Slice: \quad A
Search Buffer (m):
A
10.3
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

sirtus

Ordnance Survey Plan
Published 1967-1968
Source map scale - 1:2,500
he historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the 1840 s. 1 . In 1854 at the scale adopted for England, Wales and Scotland in the 1840 ' . I In 154
the $1: 2,5,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Strian. The pubished date given below is stier some years tater hhan
surveyed date. Before 938 ,

Map Name(s) and Date(s)

Order Details

Order Number
Customer Ref:
C7074/Former
Hebburn/CR
430400,563500
$\begin{array}{ll}\text { Slice: } & \text { A } \\ \text { Site: Area (Ha). }\end{array}$
Search Buffer (m): $\quad 100$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 Sieme
1 LX

Ordnance Survey Plan
Published 1971-1986
Source map scale - 1:1,250
he historical maps shown were reproduced from maps predominantly held
at the scale adopted tor England, Wales and Scotland in the 1840° s. In 1854
 covered the whole of what were considered to be the cultivated parts of Grea
Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties,
giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A8

Order Details

Order Number
C7074/Former
Hebburn/CR
National Grid ee: 430400,563500
Slice:
Site Area (Ha):
A
10.3
Search Buffer (m)
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31

sirtius

Additional SIMs
Published 1979-1991
Source map scale - 1:1,250
The SIM cards (Ordnance Survey's 'Survey of Information on Microfilim') are
further, minor editions of mapping which were produced and published in
 1994, and contain detailed intormation on builidings, roads and land
These maps were produced at both $1: 2,500$ and $1: 1,250$ scales.

Map Name(s) and Date(s)

Historical Map - Segment A8

Order Details

Order Number

90505614_1_1 C7074/Former Siemens Factory
Hebburn/CR
Slice: A
Search Buffer (m)
A
10.3
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Additional SIMs
Published 1986
Source map scale - 1:1,250
 urther, minor editions of mapping which were produced and pubished in 994 , and contain detailed information on buildings. roads and land-

Map Name(s) and Date(s)

Order Details

Order Number:

90505614_1_1 C7074/Former Siemens Factory Hebburn/CR
430400, 5635
National Grid Refere: 430400, 563500
Nation
Slice:
Slice:
Site Area (Ha): A
10.3

Search Buffer (m)
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

sirtus

Large-Scale National Grid Data

Published 1993

Source map scale - 1:1,250

Sarge Scale Naionar Gria Data' superseded SIMcards (Ordnance Survey's Survey of Intormation on Microfil'' in 1992, and continued to be produc
until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less
opographic features such as vegetation. These maps were produced at both opographic features such
$1: 2,500$ and $1: 1,1,250$ scales.

Map Name(s) and Date(s)

$$
\begin{aligned}
& \text { l:1,250 } \\
& \stackrel{1}{1233} \mathbf{1}
\end{aligned}
$$

Historical Map - Segment A8

Order Details

Order Number

90505614_1_1 C7074/Former Siemens Factory Hebburn/CR
430400,563500
Slice:
Slice:
Site Area (Ha): A
10.3

Search Buffer (m)
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

sirtus

Large-Scale National Grid Data

Published 1994

Source map scale - 1:1,250
 Survey of Intormation on Microfilm') in 1992, and continued to be produc
until 1999. These maps were the fore-runners of digitial mapping and so provide detaiele intirmsation on houses and roads, but tend to oshow less
opographic features such as vegetation. These maps were procuced at bot topographic eatures such
$1: 2,500$ and $1: 1,250$ scales.

Map Name(s) and Date(s)

$\begin{array}{lll}\text { \| } & \text { Nz3063SW } \\ \text { 19994 } \\ \text { 1 } 1: 1,250 & \text { \| }\end{array}$	
	1
	$\begin{aligned} & 1 \text { NZ3062NE } \\ & \text { \| } 1994,1,250 \end{aligned}$
	1

Historical Map - Segment A8

Order Details Order Number:

90505614_1_1 C7074/Former Siemens Factory
Hebburn/CR
Sice:
Site Area (Ha):
A
10.3
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

	Quarry	\%acose	Gravel Pit		$\underset{\text { Pit }}{\text { Sand }}$
	Clay Pit	6	Shingle	\%	Refus Heap

- County Boundary (Geographical)
-. -. -. County \& Civil Parish Boundary
$+\cdot+\cdot+$ Administrative County \& Civil Parish Boundary
$\overline{\text { Co. Boro. }}$ Bdy. County Borough Boundary (England)
$\overline{\text { Co. Burgh Bdy. }}$ County Burgh Boundary (Scotland)

${ }_{B P}{ }^{\text {b } S}$	Boundary Postor Stone	P..,B	Police Call Box
b.R.	Bride Road	P	Pump
E. P	Electricity Pyion	S. P	Signal Post
P. B.	Foot Bridge	St	Sluice
F.P.	Foot Path	$s p$.	Spring
$G_{\text {G. }}$ P	Guide Postor Board	t.c. ${ }^{\text {c }}$	Telephone Call Box
M.S	Mile Stone	$T_{\text {r }}$	Trough
M.P M.	R Mooring Postor Ring	w	Well

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and Supply of Unpublished Survey Information Supply of Unpublished Survey

$$
1: 2,500 \text { and } 1: 1,250
$$

-EIL _ Electricity Transmission Line

- - County Boundary (Geographical) . - . - County \& Civil Parish Boundary

$\cdots \cdots \cdots \cdots$	Civil Parish Boundary
Admin. County or County Bor. Boundary	

вн	Beer House	P	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post office
Cn, C	Capstan, Crane	PC	Public Convenience
chy	Chimney	PH	Public House
DFn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	Sb, sbr	Signal Box or Bridge
fap	Fire Alarm Pillar	sp, SL	Signal Post or Light
fb	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank orTrack
н	Hydrant or Hydraulic	TCB	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Postor Mooring Post	WrPt, WrT	Water Point, Water Tap
мs	Mile Stone	w	Well
NTL	Normal Tidal Limit	WdPp	Wind Pump

Bs	Bars		
Bty	Battery	PO	Post office
Cemy	Cemetery	PC	Public Convenience
Chy	Chimney	Pp	Pump
Cis	Cistern	Ppg Sta	Pumping Station
Dismtd Rly	Dismanted Railway	Pw	Place ofWorship
El Gen Sta	Electricity Generating Station	Sewage Pp	$\begin{aligned} & \text { pg Sta Sewase } \\ & \text { Pumping Station } \end{aligned}$
EIP	Electricity Pole, Pillar	SB, SBr	Signal Box or Bridge
EI Sub Sta	Electricity Sub Station	sL	Signal PostorLig
FB	Filter Bed	Spr	pring
FnidFn	Fountain $/$ Drinking Ftr.	Tk	Tank orTrack
Gas Gov	Gas Valve Compound	Tr	Trough
gvc	Gas Governer	wd Pp	Wind Pump
GP	Guide Post	WrPt, WrT	Water Point, W
MH	Manhole	wks	Works (buildin
MP, MS	Mile Postor Mile Stone	w	we

siřius

Historical Mapping \& Photography included:

Mapping Type	Scale	Date	Pg
Durham	1:2,500	1857-1873	
Northumberland	1:2,500	1887	3
Durham	1:2,500	1897	
Durham	1:2,500	1916	5
Durham	1:2,500	1941	6
Ordnance Survey Plan	1:1,250	1957	
Ordnance Survey Plan	1:2,500	1957-1958	8
Ordnance Survey Plan	1:1,250	1967-1983	
Ordnance Survey Plan	1:2,500	1968-1970	10
Ordnance Survey Plan	1:1,250	1975	11
Additional SIMs	1:1,250	1983-1991	12
Ordnance Survey Plan	1:1,250	1985	13
Large-Scale National Grid Data	1:1,250	1993	14
Large-Scale National Grid Data	1:1,250	1996	15

Historical Map - Segment A13

Order Details

 Order Number:Customer Ref:
90505614

Northumberland
Published 1887
Source map scale - 1:2,500
at he socaile adopoped for England, Wales and Scotland in the 1800 en s . In 185 the $1: 2,500$ scale was adopted tor mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Grea
Britain. The published date given below is often some years later than the Britian. The pubbished date given below is often some years later than
unveyed date. Before 1938 , al OS maps were based on the Cassi Prjection, with independendent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:
Customer Ref:

9050561411

 C7074/Former Siemens Factory C70bburn/CRNational Grid Reference: 430400,563500
Slice:
Site Area (Ha):
Search Buffer (m):
A
10.3
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 Sieme
1 LX

ALandmark Information Group Service v49.0 08 -Jul-2016 Page 3 of 15

Durham
Published 1897
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly hers
at the scale adopted tor England, Wales and Scotland in the 1840° s. In 1854 the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassin roveection with hineependent surveys of a single county or group of counties,
giving ise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Order Details

Order Number: Order Number:
Customer Ref:

9050561411 C7074/Former Siemens Factory, Hebburn/CR
40400,5635
National Grid Reference: 430400, 563500
Nation
Slice:
Slice:
Site Area (Ha):
Ster
A
10.3
100
Search Burer (m):
Site Details
Siemens, North Farm Road HEBBURN, Tyne and Wear, NE31

Landmark

sirtius

Durham
Published 1941
Source map scale - 1:2,500
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{s}$. In 1854 the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered ot be the cultivated parts of Great
Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Proiection, with indeepndent surveys of a single county or group of counties,
giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Order Details

Order Number:
Customer Ref: Customer Ref:

90505614_1_1 C7074/Former Siemens Factory, Hebburn/CR
National Grid Reference: 430400, 563500
National
Slice:
Site
Site Area (Ha):
Search Buffer (m)
10.3
100

Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

sirius

Ordnance Survey Plan
Published 1957
Source map scale - 1:1,250
The historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the 1840 s. In 1854 at the scale adopted for England, Wales and Scotland in the 1840 's. In
the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Titian. The published date given below is often some years later than
surveyed date. Before 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties
giving rise to significant inaccuracies in outlying areas.

Map Name (s) and Date (s)
N23064SW, N23064SE

- - 1 - - -

1:1:1250

Historical Map - Segment A13

Order Details
Order Detail Order Number:
Customer Ref: Hebtional Grid Referent Slice: Site Area (Ha):
Search Buffer (m): A
10.3
100

Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 LX

sirtus

Ordnance Survey Plan
Published 1957-1958
Source map scale - 1:2,500
hhe historical maps shown were reproduced from maps predominantly held
at the scale adopoted for England, Wales and Scotland in the 1840 s. In 1854 the $1: 2,500$ scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Sitain. The pubished date given below is often some years aleater
surveyed date. Before 1938 , all OS maps were based on the Cassini Projection, with independent surreys of a single county or group of counties
giving rise to siggificant inaccuracies in outlying areas.

Map Name(s) and Date(s)

 Historical Map - Segment A13

Order Details

Order Number:
Customer Ref:
905056141 1 C7074/Former Siemens Factory

| Hebburn/CR |
| ---: | :--- |

National Grid Reference: 430400, 563500
$\begin{array}{ll}\text { Slice: } & \text { A } \\ \text { Site Area (Ha): } & 10,3\end{array}$
Site Area (Ha):
Search Buffer (m):
100
Site Details
siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

sirtus

Ordnance Survey Plan
Published 1967-1983
Source map scale - 1:1,250
The historical maps shown were reproduced from maps predominantly held
at the scale adopted tor England, Wales and Scotland in the 1840° s. In 1854 at me $1: 2,500$ scale was adopted tor mapping urban areas and by 1896 it
the covered the whole of what were considered to be the cultivated parts of Great
Britain. The published date given below is often some years later than the Strian. The pubished date given below is stier some years tater hhan
surveyed date. Before 938 , Proiection, with independent surveys of a single county or group of counties,
giving rise to significant inaccuracies in outlying arens.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:
Customer Ref:

90505614_1_1 C7074/Former Siemens Factory Hebburn/CR
ational 430400,563500
Nation
Slice:
Site
Site Area (Ha):
Search Buffer $(\mathrm{m}):$
A
10.3
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 Sieme
1 LX

Landmark

sirtus

Ordnance Survey Plan
Published 1968-1970
Source map scale - 1:2,500
he historical maps shown were reproduced from maps predominantly held
at the scale adopted for England, Wales and Scotland in the 1840 's. In 1854 the e scale adopted or tngland, ,
the $1: 2,500$ scale ang was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Grea
Britain. The published date given below is often some years later than the
 Prjection, with independent surveys of a single county or group of counties,
giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

 Historical Map - Segment A13

Order Details
Order Number: Order Number:
Customer Ref: Hebburn/CR
Slice:
Search Buffer (m)
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark

Additional SIMs
Published 1983-1991
Source map scale - 1:1,250
the SIM cards (Ordnance Survey's Survey of Information on Microfilm') are
further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 9994, and contain detailed information on buildings, roads and land-
These maps were produced at both $1: 2,500$ and $1: 1,1,250$ scales.

Map Names) and Dates)

Historical Map - Segment A13

Order Details
Order Detail
Order Number: Order Number:
Customer Ref: $\begin{array}{ll} & \text { C7074/Former } \\ & \text { Hebburn/CR }\end{array}$ National Grid Reference: 430400, 563500 Slice:
Site Area (Ha): A
10.3
100
Search Buffer (m)
Site Details
siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1 LX

Landmark

sirtus

Large-Scale National Grid Data

Published 1993

Source map scale - 1:1,250

Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's
Survey of Intormation on Microfilm') in 1992, and continued to be produced Until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less
opographic features such as vegetation. These maps were produced at both topographic ceatures such
$1: 2,500$ and $1: 1,250$ scales.

Map Name(s) and Date(s)

$-\quad-\quad-\quad-\quad-1$

Historical Map - Segment A13

Order Details

Order Number:
Customer Ref: C7074/Former
National Grid Reference: $\begin{aligned} & \text { Hebburn/CR } \\ & 430400,563500\end{aligned}$
Slice:

Site Area (Ha): | A |
| :--- |
| A |
| 10304 |

Search Buffer (m)
100
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31

Landmark

Large-Scale National Grid Data

Published 1996

Source map scale - 1:1,250
Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's Survey of Information on Microfilim' in 1992, and continued to be prod
nntil 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show les poographic features such as vegetation. These maps were produced at both topographin teatures such
$1: 2,500$ and $1: 1,250$ scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Detail Order Number:
Customer Ref:
National Grid Reference
Slice:
Site Area (Ha):
Search Buffer (m):
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Landmark
90505614_1_1 C7074/Former Siemens Factory, Hebburn/CR
430400, 563500
Hebbu
A $: 430400$
10.3

100
100
Site Details

Historical Mapping Legends

Ordnance Survey County Series 1:10,560

Quarry

Ordnance Survey Plan 1:10,000

1:10,000 Raster Mapping

	Gravel Pit		Rock

sirius
Historical Mapping \& Photography included:

Historical Map - Slice A

Order Details Order Number:
Customer Ref:

9505614-1
National Grid Reference: $\begin{gathered}\text { Hebburn/CR } \\ 430400,563500\end{gathered}$
Slice:
$\begin{array}{ll}\text { Slice: } & \text { A } \\ \text { Site Area (Ha): } & 103\end{array}$
$\begin{array}{ll}\text { Search Buffer (m): } & 1000\end{array}$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1 LX

Landmark

siřus
Durham
Published 1862

Source map scale - 1:10,560

the historical maps show he $1: 2,500$ scale was adopted for mapping urban areas; these maps wer ised to update the $1: 10,560$ maps. The published date given therefore is
ften some years later than the surveyed date. Betore 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying
areas. In the late $19400^{\circ} \mathrm{s}$, a Provisional Edition was produced which updated the $1: 10,560$ mapping from a number of sources. The maps appear
ninished - with all military camps and other strategic sites removed. Thes nfinished - with all military camps and other strategic sites removed. Thes
apas were initilly overrorited with the National Grid. In 1970 , the first :10,000 maps were prociuced using the Transverse Mercator Proiection. Th
nem evision process continued until re 0 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number

90505614_1_ C7074/Former Siemens Factory Hebburn/CR
Nation
Slice:
Slice:
Site Area (Ha): 4306u00, 563500

Search Buffer (m)
10.3
1000

Site Details
Siemens, North Farm Road HEBBURN, Tyne and Wear, NE31

Landmark

sirtus
Northumberland
Published 1864

Source map scale - 1:10,560

the the scale adoopted for England, Wales and Scotland in the 1840 's. In 185 the 1:,500 scale was adopted for mapping urban areas; these maps were sed to update the $1: 10,560$ maps. The published date given therefore is
oten some years later than the surveyed date. Betore 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single ounty or group of counties, giving rise to signiticant inaccuracies in outlying
areas. In the late 1940 s , a Provisional Edition was produced, which updated he 1:10,560 mapping from a number of sources. The maps appear nfinished witp hill military camps and other strategie sitises apmovered. Th apss were initially overprinted with the National Grid. In 1970, the first
$.10,000$ maps were produced using the Transverse Mercator Proiection vision process continued until recently, with new editions appejaintion. 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details Order Number:
Customer Ref: C7074/Former . 430400 CR A
A
10.3
Search Buffer (m)
1000
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear NE31

Landmark Information Group Service v49.0 08-Jul-2016 Page 3 of 17

siríus
Durham
Published 1898

Source map scale - 1:10,560

at the scale adopted for England, Wales and Scotland in the 1840 s s. In 185 he $1: 2,500$ scale was adopted for mapping urban areas; these maps were ised to update the $1: 10,560$ maps. The published date given therefore is
ften some years later than the surveyed date. Betore 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single ounty or group of counties, giving rise to signiticant inaccuracies in outlying
areas. In the late 1940 s , a Provisional Edition was produced, which updated 1:10,560 mapping from a number of sources. The maps appear nitinished - with all military camps and other strategic sites removed. These : 0,000 maps were produced using the Transverse Mercator Projection. The eevisen process continued until
10 years or so for uban areas.

Map Name(s) and Date(s)

Historical Map - Slice

Order Details

Order Number
Customer Ref:
90505614_1_ C7074/Former Siemens Factory
Hebburn/CR
rence: 430400
Slice:
Site Area (Ha):
A
10.3
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31

Landmark
\qquad

siritus
Northumberland

Published 1899

Source map scale - 1:10,560

the the scale adoppted for England, Wales and Scotland in the $1840^{\mathrm{o}} \mathrm{s}$. In 185 the 1:2,500 scale was adopted for mapping urban areas; these maps wer ised to update the $1: 10,560$ maps. The published date given therefore is
ften some years later than the surveyed date. Betore 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying
areas. In the late $1940^{\circ} \mathrm{s}$, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear
unfinished - with all military camps and other strategic sites removed. These ainished - with all military camps and other strategic sites removed. These :10,000 maps were produced using the Transverse Mercator Projection. The 0 years or so for urban areas.

Map Name(s) and Date(s)

Landmark

siríus
Durham
Published 1921

Source map scale - 1:10,560

The historical maps shown were reproouced room maps predominantly hela
at the scale adoopted for England, Wales and Scotland in the $1840^{\circ} \mathrm{sin} 1854$ the $1:: 2,500$ scale was adopted for mapping urban areas; these maps were used to update the $1: 10,560$ maps. The published date given therefore is
often some years later than the surveyed date. Before 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying
areas. In the late $1940^{\circ} \mathrm{s}$, a Provisional Edition was produced which updated the 1110,560 mapping from a number of sources. The maps appear
untinished - with all military camps and other strategic sites removed. These nfinished - with all military camps and other strategic sites removed. Thes 1:10,ooo maps were produced using the Transverse Mercator Projection. The revison process continaed en ent.
10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice

Order Details Order Number C7074/Former
Hebburn/CR . 430400,563500
Slice:
Site Area (Ha):
A
10.3
Site Details
siemens, North Farm Road, HEBBURN, Tyne and Wear NE31

Landmark

siřus
Ordnance Survey Plan

Published 1951-1952

Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held he $1: 2,500$ scale was adopted for mapping urban areas; these maps were used to update the $1: 10,560$ maps. The published date given therefore is
often some years later than the surveyed date. Before 1938 , all $O S$ maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying
areas. In the late 1940 ' s a 1:10,560 mapping riom a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These
naps were initilly overrorinted with the National Grid. In 1970, the first

 0 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number:

National Grid Rebburn/CR
Slice:
Search Buffer (m)
Site Details
North Farm Road, HEBBURN, Tyne and Wear, NE31

Landmark

Sirłus

Ordnance Survey Plan

Published 1958

Source map scale - 1:10,000

at the scale adopted tor England, Wales and Scotland in the 1840° 's In 185 he 1:2,500 scale was adopted for mapping urban areas; these maps were sed to update the $1: 10,560$ maps. The published date given therefore
often some years later than the surveyed date. Before 1938, all 0 m maps were based on the Cassini Projection, with independent surveys of a single ounty or group of counties, giving rise to signiticant inaccuracies in outlying 1e 1:10,560 mapping from a number of sources. The maps appear nninished - with all military camps and others stratagic sites removed. Thes maps were initially overprinted with the National Grid. In 1970 , the first
$: 10,000$ maps were produced using the Transverse Mercator Proection. The evision process continued until recently, with new editions appearing eve 0 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number:
Customer Ref:
90505614_1_1 C7074/Former Siemens Factory
Hebburn/CR
Slice: \quad A
Search Buffer (m):
1000
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear NE31

Landmark

sirius

Ordnance Survey Plan
Published 1973-1975
Source map scale - 1:10,000
he historical maps shown were reproduced from maps predominantly held he $1: 2,500$ scale was adopted for mapping urban areas; these maps were used to update the $1: 10,560$ maps. The published date given therefore is
often some years later than the surveyed date. Before 1938 , all OS maps
 county or group of counties, giving rise to significant inaccuracies in outlying
areas. In the late 1940 s , a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These 10,000 maps were produced using the Transverse Mercator Projection. The
and vision process continued until recently, with new editions appearing every

Map Name (s) and Dates)

Historical Map - Slice A

Order Details
Order Number:
90505614_1_1 Hebburn/CR
National Grid Reference: 430400,563500
Slice: \quad A
Search Buffer (m):
10.3
1000

Site Details
see Norm Farm Road, HEBBURN, Tyne and Wear, NE31

Landmark

siř̄US

Ordnance Survey Plan

Published 1984

Source map scale - 1:10,000

at the scale adopted for England, Wales and Scotland in the 1840 's. In 185 he 1:2,500 scale was adopted for mapping urban areas; these maps wer sed to update the $1: 10,560$ maps. The published date given therefore
ften some years later than the surveyed date. Before 1938 , all OS maps were based on the Cassini Projection, with independent surveys of a single ounty or group of counties, giving rise to signiticant inaccuracies in outlying e 1:10,560 mapping from a number of sources. The maps appear nninished - with all military camps and others stratagic sites removed. Thes aps were initially overprinted with the National Grid. In 1970, the first
$: 10,000$ maps were produced using the Transwerse Mercator Projection. The
 0 years or so for urban areas.

Map Name(s) and Date(s)

,		1
,	NZ26SE 1984 1:10,000	1
,		1
।		1
,		1
1		I

Historical Map - Slice A

Order Details

Order Number:
Customer Ref:
90505614_1_1 C7074/Former Siemens Factory Hebburn/CR
Slice: \quad A Search Buffer (m):

1000
Site Details
Siemens, North Farm Road HEBBURN, Tyne and Wear, NE31

Landmark
Tel:
Fax:
Web:

sirtus
Ordnance Survey Plan
Published 1991-1992

Source map scale - 1:10,000

he historical maps shown were reproduced from maps predominantly held he $1: 2,500$ scale was adopted for mapping urban areas; these maps were used to update the $1: 10,560$ maps. The published date given therefore is
often some years later than the surveyed date. Before 1938 , all OS maps
 county or group of counties, giving rise to significant inaccuracies in outlying
areass In the late 1940 s , a Provisional Edition was produced, which updated he $1: 10,560$ mapping from a number of sources. The maps appear
unfinished - with all military camps and other strategic sites removed. These Unfinished - with all military camps and other strategic sites removed. These 10,000 maps were produced using the Transverse Mercator Projection. The
and vision processs continued uni.
10 years or so tor urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number:

90505614_1_1 C7074/Former
Hebburn/CR
ational Grid Reference: 430400 Hebburn/CR
Slice:
Site Area (Ha):
Search Buffer (m)
10.3
1000

Site Details
North Farm Road, HEBBURN, Tyne and Wear, NE31

Landmark
A Landmark Information

SirڭUS

Industrial Land Use Map

General

Specified Site
Specified Buffers) X Bearing Reference Point
Industrial Land Use
\star Contennorary Trade Directory Entit
\star Fuel Station Eitry
Gas Pipline

Industrial Land Use Map - Slice A

Order Details

Order Number:
9050561411
C7074/Former
Hebburn/CR
National Grid Reference: 430400, 563500
$\begin{array}{ll}\text { Slice: } & \text { A } \\ \text { Site Area (Ha): } & 10.3\end{array}$
Search Buffer (m): $\quad 1000$
Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

Index Map
For ease of identification, your site and buffer have been split into Slices, Segments and Quaarants. These are illustrated on the Index Map opposi and explained further belo

Slice Each slice represents a $1: 10,000$ plot area $(2.7 \mathrm{~km} \times 2.7 \mathrm{~km}$) for your site and bufter. A large site and buffer may be made up of several slices (represented
by a red outine), that are referenced by letters of the alphabet, starting from yy a red outines), that are referenced by letters of the alphabet, starting trom
he bottom left corner of the slice "grid". This grid does not relate to Nation he botiom left corner of the slice "grid" This grid does not relate
Grid lines but is designed to give best fit over the site and butfer.

Segment
ssogmentrepresents a 1:2,500 plot area. Segments that have plot tiles associated with them are shown in dark green, others in light
numbered from the bottom left hand corner within each slice.
qE and are referenced in the datasheet to allow features as $\mathrm{NW}, \mathrm{NE}, \mathrm{SW}$, on plots. Therefore a feature that has a quadrant reference of ATNW will be in slice A, Segment 7 and the NW Quadrant.

Aseng
nvirocheck reports are compiled from 136 different sources of data.

Client Details
S Howson, Sirius Geotechnical \& Environmental Ltd, 424 Park Approach, Thorpe Park, Leeds, LS15 8GB

Order Details

 Order Number:Customer Ref:

90505614_1_ C7074/Former Siemens Factory Hebburn/CR
National Grid Reference: 430400,563480 Site Area (Ha) 10.3
1000

Site Details
Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX
Full Terms and Conditions can be found on the following link
mw.landmarkinfo.co.ukTerms/Show/515
Landmark Tel:
Tax:
Feb:
We:

APPENDIX C MINING REPORT

CON29M
 Non-Residential Mining Report

SIEMENS

NORTH FARM ROAD
HEBBURN
TYNE \& WEAR

Date of enquiry:
Date enquiry received:
Issue date:

Our reference:
51001201696001
Your reference:

CON29M Non-Residential Mining Report

This report is based on, and limited to, the records held by the Coal Authority and the Cheshire Brine Subsidence Compensation Board's records, at the time we answer the search.

Client name

LANDMARK INFORMATION GROUP LIMITED

Enquiry address

SIEMENS, NORTH FARM ROAD, HEBBURN, TYNE \& WEAR

How to contact us

03457626848 (UK)
+44 (0)1623 637000 (International)

200 Lichfield Lane
Mansfield
Nottinghamshire
NG18 4RG

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2016. All rights reserved.

Ordnance Survey Licence number: 100020315

Summary

Has the search report highlighted evidence or potential of		
1	Past underground coal mining	Yes
2	Present underground coal mining	No
3	Future underground coal mining	Yes
4	Mine entries	Yes
5	Coal mining geology	No
6	Past opencast coal mining	No
7	Present opencast coal mining	No
8	Future opencast coal mining	No
9	Coal mining subsidence	No
10	Mine gas	No
11	Hazards related to coal mining	No
12	Withdrawal of support	No
13	Working facilities order	No
14	Payments to owners of former copyhold land	No
15	Information from the Cheshire Brine Subsidence Compensation Board	

For detailed findings, please go to page 4.

Detailed findings

1. Past underground coal mining

The property is in a surface area that could be affected by underground mining in 4 seams of coal at 210 m to 400 m depth, and last worked in 1947.

Any movement in the ground due to coal mining activity should have stopped.
In addition the property is in an area where the Coal Authority believe there is coal at or close to the surface. This coal may have been worked at some time in the past. The potential presence of coal workings at or close to the surface should be considered prior to any site works or future development activity. Your attention is drawn to the Comments on the Coal Authority information section of the report.

2. Present underground coal mining

The property is not within a surface area that could be affected by present underground mining.

3. Future underground coal mining

The property is not in an area where the Coal Authority has plans to grant a licence to remove coal using underground methods.

The property is not in an area where a licence has been granted to remove or otherwise work coal using underground methods.

The property is not in an area likely to be affected from any planned future underground coal mining.

However, reserves of coal exist in the local area which could be worked at some time in the future.
No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

4. Mine entries

There are no known coal mine entries within, or within 20 metres of, the boundary of the property.
There may however be mine entries/additional mine entries in the local area which the Coal Authority has no knowledge of.

5. Coal mining geology

The Coal Authority is not aware of any damage due to geological faults or other lines of weakness that have been affected by coal mining.

6. Past opencast coal mining

The property is not within the boundary of an opencast site from which coal has been removed by opencast methods.

7. Present opencast coal mining

The property does not lie within 200 metres of the boundary of an opencast site from which coal is being removed by opencast methods.

8. Future opencast coal mining

There are no licence requests outstanding to remove coal by opencast methods within 800 metres of the boundary.

The property is not within 800 metres of the boundary of an opencast site for which a licence to remove coal by opencast methods has been granted.

9. Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres, since 31st October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.
The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

10. Mine gas

The Coal Authority has no record of a mine gas emission requiring action.

11. Hazards related to coal mining

The property has not been subject to remedial works, by or on behalf of the Authority, under its Emergency Surface Hazard Call Out procedures.

12. Withdrawal of support

The property is not in an area where a notice to withdraw support has been given.
The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.
13. Working facilities order

The property is not in an area where an order has been made, under the provisions of the Mines (Working Facilities and Support) Acts 1923 and 1966 or any statutory modification or amendment thereof.
14. Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.
15. Information from the Cheshire Brine Subsidence Compensation Board The property lies outside the Cheshire Brine Compensation District.

Comments on the Coal Authority information

The Coal Authority own the copyright in this report and the information used is protected by our database right.

In view of the mining circumstances a prudent developer would seek appropriate technical advice before any works are undertaken.

Therefore if development proposals are being considered, technical advice relating to both the investigation of coal and former coal mines and their treatment should be obtained before beginning work on site. All proposals should apply good engineering practice developed for mining areas. No development should be undertaken that intersects, disturbs or interferes with any coal or mines of coal without the permission of the Coal Authority. Developers should be aware that the investigation of coal seams/former mines of coal may have the potential to generate and/or displace underground gases and these risks both under and adjacent to the development should be fully considered in developing any proposals. The need for effective measures to prevent gases entering into public properties either during investigation or after development also needs to be assessed and properly addressed. This is necessary due to the public safety implications of any development in these circumstances.

Additional remarks

Information provided by the Coal Authority in this report is compiled in response to the Law Society's Con29M Coal Mining and Brine Subsidence Claim enquiries. The said enquiries are protected by copyright owned by the Law Society of 113 Chancery Lane, London WC2A 1PL. Please note that Brine Subsidence Claim enquiries are only relevant for England and Wales. This report is prepared in accordance with the Law Society's Guidance Notes 2006, the User Guide 2006 and the Coal Authority and Cheshire Brine Board's Terms and Conditions applicable at the time the report was produced.

Disclaimer

The Coal Authority owns the copyright in this report. The information we have used to write this report is protected by our database rights. All rights are reserved and unauthorised use is prohibited. If we provide a report for you, this does not mean that copyright and any other rights will pass to you. However, you can use the report for your own purposes.

Alternative formats

If you would like this report in an alternative format, please contact our communications team.

Enquiry boundary

Key
Approximate position of enquiry
boundary shown

How to contact us

03457626848 (UK)
+44 (0)1623 637000 (International)

200 Lichfield Lane
Mansfield
Nottinghamshire
NG18 4RG
www.gov.uk/coalauthority
in /company/the-coal-authority/thecoalauthority
/coalauthority

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2016. All rights reserved.

Ordnance Survey Licence number: 100020315

Sirîus

APPENDIX D

EXPLORATORY HOLE LOGS

						BOREHOLE RECORD			BH No.		RO103 Sheet 1 of 1	
						Site:	Former Siemens Factory, Hebburn		Contract No: $\mathrm{C7074}$			
						Client: Miller Homes (NE) Ltd			Date: $28 / 06 / 2016$			
						Method: Rotary openhole drilling using a Casagrande C6 rig and air flush			Scale: 1:150			
SAMPLE DETAILS						STRATA RECORD			Logeed By: MD		Checked By:	RCS
$\begin{array}{c\|} \hline \text { Depth } \\ \text { From }-\mathrm{To}(\mathrm{~m}) \\ \hline \end{array}$	TCR	SCR	RQD	Fl	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text {-water } \end{array}$				Depth (m)	$\begin{aligned} & \text { Level } \\ & \text { (m AOOD) } \end{aligned}$	${ }^{\text {Legend }}$	Well
	TCR	SCR	RQD	Fl		MADE MADE	OUND OUND, concrete at 3.9m End of Bo		0.40 3.90			
Remarks and Groundwater Observations: 1. Suspected reinforced concrete encountered at 3.9 m . Borehole terminated.								GL (m AOD) \quad Fig No.				
								North		RO103		

Sirťu

APPENDIX E

LABORATORY TEST
 RESULTS

Certificate of Analysis

Certificate Number 16-71697-1
12-Jul-16

```
Client Sirius Geotechnical \& Environmental Russel House
Suite 2
Mill Road
Langley Moor
DH7 8HJ
Our Reference 16-71697-1
Client Reference C7074
Order No 13793/C7074
Contract Title Hebburn
Description 56 Soil samples.
Date Received 04-Jul-16
Date Started 04-Jul-16
Date Completed 12-Jul-16
Test Procedures Identified by prefix DETSn (details on request).
```


Notes This report supersedes 16-71697, Extra Testing

```
Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.
```

Approved By

Rob Brown
Business Manager
mCERTS

Summary of Chemical Analysis Matrix Descriptions

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Sample ID	Depth	Lab No	Completed	Matrix Description
TP101	0.50-1.00	1017262	11/07/2016	Dark brown very slightly clayey, slightly sandy GRAVEL including odd roots (Made ground - brick) (sample matrix outside MCERTS scope of accreditation)
TP103	3	1017263	11/07/2016	Brown slightly sandy GRAVEL including some roots (Made ground - glass, metal, brick, bitchumin) (sample matrix outside MCERTS scope of accreditation)
TP105	0.20-0.80	1017265	11/07/2016	Grey very slightly clayey, sandy GRAVEL (Made ground - brick) (sample matrix outside MCERTS scope of accreditation)
TP105	1.00-1.50	1017266	11/07/2016	Dark brown very slightly gravelly, very, slightly sandy CLAY (Made ground - brick)
TP106	0.20-0.60	1017267	11/07/2016	Brown slightly clayey, gravelly SAND (Made ground - brick)
TP106	1.00-1.50	1017268	11/07/2016	Dark brown very slightly gravelly, slightly sandy CLAY
TP107	0.20-0.70	1017269	11/07/2016	Red very slightly clayey, gravelly SAND (Made ground - brick) (Possible made ground - slag)
TP108	0.00-0.40	1017270	11/07/2016	Dark brown very slightly gravelly, slightly sandy CLAY including numerous roots
TP109	0.00-0.30	1017271	11/07/2016	Very dark brown very slightly gravelly, slightly sandy CLAY including numerous roots
TP110	0.00-0.30	1017272	11/07/2016	Black very slightly gravelly, slightly sandy CLAY including odd roots
TP111	0.00-0.30	1017273	11/07/2016	Black very slightly gravelly, sandy CLAY including odd roots (Made ground - brick)
TP112	0.00-0.20	1017274	11/07/2016	Dark brown very slightly sandy, slightly gravelly CLAY including numerous roots (Made ground - brick)
TP112	1	1017275	11/07/2016	Dark brown very slightly sandy, very, slightly gravelly CLAY including odd roots (Made ground - brick, charcoal)
TP112	3	1017276	11/07/2016	Dark brown very slightly sandy, very, slightly gravelly CLAY including odd roots (Made ground - brick)
TP113	0.00-0.30	1017277	11/07/2016	Dark brown slightly sandy, slightly gravelly CLAY including numerous roots
TP114	0.00-0.75	1017278	11/07/2016	Black very slightly clayey, slightly gravelly SAND (Possible made ground -glass, brick)
TP115	0.00-0.25	1017279	11/07/2016	Dark brown slightly gravelly, slightly sandy CLAY including numerous roots (Made ground -brick)
TP115	0.25-1.00	1017280	11/07/2016	Brown slightly sandy, slightly clayey GRAVEL including odd roots (Made ground - brick) (sample matrix outside MCERTS scope of accreditation)
TP116	0.00-0.30	1017281	11/07/2016	Dark brown slightly gravelly, slightly sandy CLAY including some roots (Made ground - brick)
TP116	2	1017282	11/07/2016	Dark brown very slightly gravelly, very, slightly sandy CLAY including odd roots (Made ground - brick)
TP118	0.90-1.30	1017283	11/07/2016	Dark brown slightly clayey, slightly sandy GRAVEL including odd roots (Made ground - brick) (sample matrix outside MCERTS scope of accreditation)
TP118	1.30-2.00	1017284	11/07/2016	Dark brown very slightly gravelly CLAY
TP119	0.20-0.50	1017285	11/07/2016	Grey very slightly clayey, gravelly SAND (Made ground - brick)
TP129	0.1	1017294	11/07/2016	Black very slightly gravelly, very, slightly sandy CLAY including much roots
TP129	0.9	1017295	11/07/2016	Dark grey very slightly gravelly, very slightly sandy CLAY (Made ground - brick)
TP137	0.9	1017301	11/07/2016	Dark brown slightly gravelly, sandy CLAY odour hydrocarbons
TP137	1.3	1017302	11/07/2016	Brown very slightly gravelly, slightly sandy CLAY
TP138	0.4	1017303	11/07/2016	Brown slightly sandy GRAVEL (Made ground - brick, concrete) (sample matrix outside MCERTS scope of accreditation)
TP139	0.5	1017304	11/07/2016	Brown very slightly clayey, sandy GRAVEL (Made ground -brick) (sample matrix outside MCERTS scope of accreditation)
TP139	1	1017305	11/07/2016	Dark brown very slightly gravelly CLAY
TP140	0.00-0.30	1017306	11/07/2016	Black slightly gravelly, sandy CLAY including numerous roots
TP140	2	1017307	11/07/2016	Dark brown very slightly gravelly CLAY
TP141	0.4	1017308	11/07/2016	Dark brown very sandy GRAVEL (Made ground -brick) (sample matrix outside MCERTS scope of accreditation)
TP142	0.00-0.15	1017309	11/07/2016	Dark brown slightly gravelly, slightly sandy CLAY including numerous roots (Made ground -brick)
TP143	0.40-0.70	1017310	11/07/2016	Brown very slightly clayey, gravelly SAND (Made ground - brick)
TP144	0.00-0.15	1017311	11/07/2016	Dark brown very slightly clayey, gravelly SAND including numerous roots (Made ground - brick)
TP144	0.30-0.70	1017312	11/07/2016	Dark brown very slightly sandy, slightly gravelly CLAY including some roots

Summary of Chemical Analysis
Matrix Descriptions

Our Ref 16-71697-1

Client Ref C7074
Contract Title Hebburn

Sample ID
Depth
TP145 Lab No Completed Matrix Description TP147 $0.25-0.60$ 1017313 $11 / 07 / 2016$ Dark brown very slightly clayey, gravelly SAND including odd roots (Made ground - brick)

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Lab No Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017262	1017263	1017264	1017265	1017266	1017267
				TP101	TP103	TP104A	TP105	TP105	TP106
				0.50-1.00	3.00	0.00-1.00	0.20-0.80	1.00-1.50	0.20-0.60
				SOIL	soil	Soll	Soll	Soll	Soll
				20/06/16	20/06/16	20/06/16	20/06/16	20/06/16	20/06/16
				n / s	n/s	n / s	n / s	n / s	n / s
		LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0		Y		Y			
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	4.1	3.7		9.5	7.6	5.9
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	0.2		0.6	< 0.1	0.2
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	13	12		13	32	15
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	28	14		22	25	22
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	31	17		140	23	48
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	< 0.05	<0.05		0.10	< 0.05	< 0.05
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	9.0	8.1		11	40	15
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	0.6	< 0.5		< 0.5	< 0.5	<0.5
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	53	54		190	62	110
Inorganics									
pH	DETSC 2008\#			11.6	10.3		12.0	9.7	9.9
Total Organic Carbon	DETSC 2002	0.1	\%	0.7	1.7		1.1	1.1	4.8
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	290	910		24	48	510
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.69	0.54		0.31	0.03	0.31
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	0.01	0.02		< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	< 1.2	420		340	16	160
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	7.9	1800		2500	120	870
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	140	1300		1700	92	570
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	150	3400		4500	230	1600
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	< 0.9	< 0.9		< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	3.9	130		160	8.2	66
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	83	490		1200	57	430
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	270	470		950	53	300
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	350	1100		2300	120	800
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	500	4500		6800	350	2400
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	< 0.01		< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	< 0.01		<0.01	<0.01	<0.01

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Method		Lab No	1017262	1017263	1017264	1017265	1017266	1017267
			mple ID	TP101	TP103	TP104A	TP105	TP105	TP106
			Depth	0.50-1.00	3.00	0.00-1.00	0.20-0.80	1.00-1.50	0.20-0.60
			ther ID						
		Sam	Type	SOIL	SOIL	SOIL	Soll	Soll	SOIL
		Sampli	g Date	20/06/16	20/06/16	20/06/16	20/06/16	20/06/16	20/06/16
		Sampl	g Time	n / s					
Test		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		< 0.1	< 0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.4	1.8		2.0	< 0.1	1.8
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.5	0.8		1.1	< 0.1	0.6
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.0	0.8		2.1	< 0.1	0.6
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	17	3.9		1.6	< 0.1	1.9
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	5.7	4.6		0.3	< 0.1	1.9
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	36	1.1		<0.1	< 0.1	<0.1
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	25	0.4		< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	17	5.3		< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	17	1.1		< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	11	0.7		< 0.1	< 0.1	<0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	6.4	0.8		< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	11	0.9		< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	7.6	< 0.1		< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.9	<0.1		<0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	6.1	< 0.1		< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	160	22		7.2	<1.6	6.7
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		< 0.01		< 0.01		< 0.01
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01		< 0.01		< 0.01
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.12		0.36		< 0.01
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.13		0.16		< 0.01
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.09		0.13		< 0.01
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.19		0.38		< 0.01
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.03		0.04		< 0.01
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$		0.57		1.1		<0.01
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	1.0	<0.3		< 0.3	<0.3	0.5

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Lab No Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017268	1017269	1017270	1017271	1017272	1017273
				TP106	TP107	TP108	TP109	TP110	TP111
				1.00-1.50	0.20-0.70	0.00-0.40	0.00-0.30	0.00-0.30	0.00-0.30
				Soll	SOIL	SOIL	SOIL	SOIL	SOIL
				20/06/16	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16
				n / s					
		LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0							
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	7.4	12	21	38	41	34
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.9	0.7	0.7	0.6	0.4
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	29	14	29	34	27	26
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	23	28	87	110	150	110
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	19	84	180	330	290	200
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	< 0.05	< 0.05	0.13	0.29	0.32	0.23
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	36	20	33	27	29	26
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	64	280	170	160	180	130
Inorganics									
pH	DETSC 2008\#			8.2	11.6	7.0	7.0	7.3	7.4
Total Organic Carbon	DETSC 2002	0.1	\%	1.0	0.4	4.5	6.0	6.8	9.9
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	110	120	29	47	33	87
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.04	0.22	0.07	0.08	0.10	0.09
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01					
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	< 1.5					
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	< 1.2					
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5					
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	< 3.4					
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10					
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	< 0.9					
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5					
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	< 0.6					
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	< 1.4					
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10					
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10					
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Method	Lab No Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017268	1017269	1017270	1017271	1017272	1017273
				TP106	TP107	TP108	TP109	TP110	TP111
				1.00-1.50	0.20-0.70	0.00-0.40	0.00-0.30	0.00-0.30	0.00-0.30
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				20/06/16	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16
				n / s					
Test		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	0.3	< 0.1	0.3	0.3
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	< 0.1	0.4	< 0.1	0.5	0.5
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	0.4	< 0.1	0.5	0.3
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	< 1.6	< 1.6	< 1.6	< 1.6	<1.6	< 1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	< 0.3	<0.3	0.5	1.1	1.5	0.5

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Method	Lab NoSample IDDepthOther IDSample TypeSampling DateSampling Time							
				1017274	1017275	1017276	1017277	1017278	1017279
				TP112	TP112	TP112	TP113	TP114	TP115
				0.00-0.20	1.00	3.00	0.00-0.30	0.00-0.25	0.00-0.25
				Soll	SOIL	SOIL	SOIL	SOIL	SOIL
				21/06/16	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16
				n / s					
Test		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	<0.1	< 0.1	< 0.1	0.3
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.7
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.4	< 0.1	< 0.1	< 0.1	0.9	4.4
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	< 0.1	< 0.1	0.2	2.3
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.7	<0.1	<0.1	<0.1	1.7	7.0
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.6	< 0.1	< 0.1	< 0.1	1.6	5.2
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3	< 0.1	< 0.1	< 0.1	0.8	3.0
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3	< 0.1	< 0.1	< 0.1	0.8	2.6
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	0.8	2.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	0.4	1.7
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	1.3	2.4
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	1.1	1.6
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.4
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	1.1	1.5
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	2.4	< 1.6	<1.6	<1.6	11	35
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	3.2	< 0.3	< 0.3	< 0.3	< 0.3	0.7

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Method		Lab No	1017280	1017281	1017282	1017283	1017284	1017285
			mple ID	TP115	TP116	TP116	TP118	TP118	TP119
			Depth	0.25-1.00	0.00-0.30	2.00	0.90-1.30	1.30-2.00	0.20-0.50
			ther ID						
		Sam	Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	g Date	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16
		Sampli	Time	n / s					
Test		LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0			Y				
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	13	20	8.2	9.1	7.3	13
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3	0.5	0.2	0.4	<0.1	0.2
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	18	29	31	14	27	14
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	54	120	32	350	24	44
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	88	190	28	150	20	260
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	0.11	0.13	<0.05	0.21	< 0.05	0.13
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	17	37	38	15	33	12
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	75	160	72	510	58	130
Inorganics									
pH	DETSC 2008\#			8.1	7.7	8.1	9.5	8.2	10.6
Total Organic Carbon	DETSC 2002	0.1	\%	1.6	2.7	1.5	0.7	1.1	0.6
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	27	21	170	240	60	1400
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.12	0.11	0.06	0.03	0.22	0.91
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				0.07	0.09	
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$				3.1	< 1.5	
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$				19	< 1.2	
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$				37	<1.5	
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$				33	< 3.4	
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				92	< 10	
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	<0.01	
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				< 0.01	< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				0.03	0.06	
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$				<0.9	<0.9	
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$				9.4	<0.5	
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$				27	<0.6	
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$				25	< 1.4	
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				61	< 10	
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				150	< 10	
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	<0.01	
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	< 0.01	
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	< 0.01	
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	<0.01	
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$				<0.01	< 0.01	

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017280	1017281	1017282	1017283	1017284	1017285
				TP115	TP116	TP116	TP118	TP118	TP119
				0.25-1.00	0.00-0.30	2.00	0.90-1.30	1.30-2.00	0.20-0.50
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				21/06/16	21/06/16	21/06/16	21/06/16	21/06/16	21/06/16
				n / s					
		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.6	0.3	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	2.5	0.8	< 0.1	0.4	< 0.1	<0.1
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	2.1	0.7	< 0.1	0.3	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.4	0.7	< 0.1	< 0.1	< 0.1	<0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.4	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.3	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.6	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.5	0.4	< 0.1	< 0.1	< 0.1	<0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	14	4.4	<1.6	<1.6	<1.6	<1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	0.6	0.7	<0.3	<0.3	<0.3	<0.3

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

			Lab No	1017287	1017289	1017294	1017295	1017297	1017299
			mple ID	TP121	TP123	TP129	TP129	TP131	TP133
			Depth	1.40	0.30	0.10	0.90	1.20	0.50
			ther ID						
			Type	SOIL	SOIL	SOIL	Soll	SOIL	SOIL
		Samp	ing Date	22/06/16	22/06/16	22/06/16	22/06/16	23/06/16	23/06/16
		Samp	g Time	n / s					
Test	Method	LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0		Y	Y			Y	Y
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$			28	7.8		
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$			0.5	0.1		
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$			23	28		
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$			120	28		
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$			200	43		
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$			0.20	0.05		
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$			26	29		
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$			< 0.5	<0.5		
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$			150	60		
Inorganics									
pH	DETSC 2008\#					6.3	8.2		
Total Organic Carbon	DETSC 2002	0.1	\%			6.1	1.2		
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg/l			52	69		
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%			0.10	0.04		
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C12-C16	DETSC 3072\#	0.5	mg/kg						
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$						

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Method		Lab No	1017287	1017289	1017294	1017295	1017297	1017299
			mple ID	TP121	TP123	TP129	TP129	TP131	TP133
			Depth	1.40	0.30	0.10	0.90	1.20	0.50
			ther ID						
			le Type	Soll	SOIL	SOIL	Soll	Soll	SOIL
		Samp	ing Date	22/06/16	22/06/16	22/06/16	22/06/16	23/06/16	23/06/16
		Sampl	ng Time	n / s					
Test		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	<0.1		
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	<0.1		
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	<0.1		
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			0.4	<0.1		
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			0.6	0.3		
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			0.5	0.2		
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	<0.1		
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	<0.1		
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	< 0.1		
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			<0.1	< 0.1		
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
Benzo(g, h, i) perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$			< 0.1	< 0.1		
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$			1.6	< 1.6		
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$			1.6	0.5		

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074

Contract Title Hebburn

	Method	Lab No Sample ID Depth Other ID Sample Type Sampling Date Sampling Time							
				1017301	1017302	1017303	1017304	1017305	1017306
				TP137	TP137	TP138	TP139	TP139	TP140
				0.90	1.30	0.40	0.50	1.00	0.00-0.30
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				23/06/16	23/06/16	23/06/16	23/06/16	23/06/16	23/06/16
				n / s					
Test		LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0							
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	5.9	6.9	10	8.4	9.0	26
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.6	0.1	1.7	0.2	0.2	0.5
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	22	29	130	13	36	20
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	48	21	22	31	30	110
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	95	16	83	63	32	200
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	< 0.05	< 0.05	< 0.05	0.13	< 0.05	0.18
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	24	32	21	13	47	21
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	99	51	480	77	71	140
Inorganics									
pH	DETSC 2008\#			9.8	8.4	11.7	12.1	8.0	7.1
Total Organic Carbon	DETSC 2002	0.1	\%	1.6	0.9	0.5	0.8	1.0	5.5
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	430	27	280	48	240	52
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.23	0.02	0.54	0.50	0.07	0.11
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	0.79	< 0.01		< 0.01	< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	5.6	0.58		0.02	0.02	
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	130	120		2.4	< 1.5	
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	620	600		400	<1.2	
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	2100	2100		1300	< 1.5	
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	1200	1200		480	< 3.4	
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	4100	4000		2100	< 10	
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	0.14	<0.01		< 0.01	< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	12	0.36		< 0.01	< 0.01	
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	110	100		< 0.9	< 0.9	
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	480	470		220	< 0.5	
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	1200	1200		760	< 0.6	
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	840	810		280	< 1.4	
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	2700	2600		1300	<10	
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	6800	6500		3400	< 10	
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	< 0.01		< 0.01	< 0.01	
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	0.34	< 0.01		< 0.01	< 0.01	
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	0.14	<0.01		< 0.01	< 0.01	
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	1.4	<0.01		< 0.01	< 0.01	
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01	<0.01		< 0.01	<0.01	

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017301	1017302	1017303	1017304	1017305	1017306
				TP137	TP137	TP138	TP139	TP139	TP140
				0.90	1.30	0.40	0.50	1.00	0.00-0.30
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				23/06/16	23/06/16	23/06/16	23/06/16	23/06/16	23/06/16
				n / s					
		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.5	< 0.1	<0.1	<0.1	< 0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.5	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.7
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.6
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	3.8	< 1.6	< 1.6	< 1.6	<1.6	<1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	< 0.01					
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01					
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	0.5	<0.3	<0.3	<0.3	<0.3	1.1

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074

Contract Title Hebburn

			Lab No	1017307	1017308	1017309	1017310	1017311	1017312
			mple ID	TP140	TP141	TP142	TP143	TP144	TP144
			Depth	2.00	0.40	0.00-0.15	0.40-0.70	0.00-0.15	0.30-0.70
			ther ID						
		Sam	e Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	g Date	23/06/16	24/06/16	24/06/16	24/06/16	24/06/16	24/06/16
		Sampli	g Time	n / s					
Test	Method	LOD	Units						
Asbestos Quantification OHR	DETSC 1102	0							
Metals									
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	13	7.8	16	51	18	13
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2	0.2	0.9	0.9	0.5	0.3
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	31	11	23	25	24	26
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	72	31	130	180	96	58
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	62	42	120	300	140	66
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	0.07	< 0.05	0.08	0.39	0.18	0.07
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	30	13	27	22	27	30
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	<0.5	<0.5	< 0.5	0.5	<0.5
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	87	66	230	270	150	150
Inorganics									
pH	DETSC 2008\#			9.5	12.5	7.7	10.7	7.0	8.2
Total Organic Carbon	DETSC 2002	0.1	\%	1.7	1.0	3.4	1.1	6.0	1.6
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	110	< 10	40	1500	94	130
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.06	0.41	0.10	0.79	0.11	0.09
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$						
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$						
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$						
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$						

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Lab NoSample IDDepthOther IDSample TypeSampling DateSampling Time		1017307	1017308	1017309	1017310	1017311	1017312
				TP140	TP141	TP142	TP143	TP144	TP144
				2.00	0.40	0.00-0.15	0.40-0.70	0.00-0.15	0.30-0.70
				SOIL	Soll	SOIL	Soll	Soll	SOIL
				23/06/16	24/06/16	24/06/16	24/06/16	24/06/16	24/06/16
				n/s	n/s	n / s	n/s	n / s	n / s
		LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.9	<0.1	<0.1	<0.1	1.3	0.7
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.7	< 0.1	< 0.1	< 0.1	1.0	0.7
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Indeno(1,2,3-c, d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	<1.6	< 1.6	<1.6	<1.6	2.3	< 1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$						
Phenols									
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	0.6	<0.3	1.2	<0.3	1.8	0.5

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1 Client Ref C7074							
Contract Title Hebburn							
			Lab No	1017313	1017314	1017315	1017317
			mple ID	TP145	TP147	TP150	TP152
			Depth	0.25-0.60	0.40-0.60	0.00-0.50	0.00-0.50
			ther ID				
		Sam	le Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ng Date	24/06/16	24/06/16	24/06/16	24/06/16
		Sampl	g Time	n / s	n / s	n / s	n / s
Test	Method	LOD	Units				
Asbestos Quantification OHR	DETSC 1102	0				Y	Y
Metals							
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	6.3	6.7		
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3	0.2		
Chromium	DETSC 2301\#	0.15	$\mathrm{mg} / \mathrm{kg}$	13	14		
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	67	17		
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	89	51		
Mercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	0.06	< 0.05		
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	17	14		
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	< 0.5	< 0.5		
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	250	110		
Inorganics							
pH	DETSC 2008\#			11.5	12.2		
Total Organic Carbon	DETSC 2002	0.1	\%	0.6	0.6		
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	210	18		
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.84	0.36		
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C6-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C10-C12	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C12-C16	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C16-C21	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C21-C35	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$				
Aliphatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C5-C7	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C7-C8	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C8-C10	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C10-C12	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C12-C16	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C16-C21	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C21-C35	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$				
Aromatic C5-C35	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				
TPH Ali/Aro Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$				
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$				

Summary of Chemical Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Test	Method	Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		1017313	1017314	1017315	1017317
				TP145	TP147	TP150	TP152
				0.25-0.60	0.40-0.60	0.00-0.50	0.00-0.50
				SOIL	SOIL	SOIL	SOIL
				24/06/16	24/06/16	24/06/16	24/06/16
				n / s	n / s	n/s	n / s
		LOD	Units				
PAHs							
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1		
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1		
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.2	< 0.1		
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.4	< 0.1		
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.4	< 0.1		
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.1	< 0.1		
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	< 0.1		
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	< 0.1	< 0.1		
PAH Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	4.2	< 1.6		
PCBs							
PCB 28 + PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$				
Phenols							
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	<0.3	0.3		

Summary of Asbestos Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

La	Sample ID	Material Type	Resu	Comment*	Analyst
1017262	TP101 0.50-1.00	SOIL	Amosite Chrysotile	Amosite \& Chrysotile present as fibre bundles	Jeff Cruddas
1017263	TP103 3.00	SOIL	NAD	none	Jeff Cruddas
1017264	TP104A 0.00-1.00	SOIL	Chrysotile	Chrysotile present in bitumen fragments \& fibre bundles	Jeff Cruddas
1017265	TP105 0.20-0.80	SOIL	NAD	none	Jeff Cruddas
1017267	TP106 0.20-0.60	SOIL	NAD	none	Jeff Cruddas
1017270	TP108 0.00-0.40	SOIL	NAD	none	Jeff Cruddas
1017271	TP109 0.00-0.30	SOIL	NAD	none	Jeff Cruddas
1017272	TP110 0.00-0.30	SOIL	NAD	none	Jeff Cruddas
1017273	TP111 0.00-0.30	SOIL	NAD	none	Jeff Cruddas
1017274	TP112 0.00-0.20	SOIL	NAD	none	Jeff Cruddas
1017275	TP112 1.00	SOIL	NAD	none	Keith Wilson
1017277	TP113 0.00-0.30	SOIL	NAD	none	Jeff Cruddas
1017278	TP114 0.00-0.25	SOIL	Chrysotile	Chrysotile present as small clump \& fibre bundles	Jeff Cruddas
1017279	TP115 0.00-0.25	SOIL	NAD	none	Jeff Cruddas
1017280	TP115 0.25-1.00	SOIL	Chrysotile	Chrysotile present as small bundle	Jeff Cruddas
1017281	TP116 0.00-0.30	SOIL	Chrysotile	Chrysotile present as small clump \& fibre bundles	Jeff Cruddas
1017282	TP116 2.00	SOIL	NAD	none	Keith Wilson
1017283	TP118 0.90-1.30	SOIL	NAD	none	Jeff Cruddas
1017285	TP119 0.20-0.50	SOIL	NAD	none	Jeff Cruddas
1017286	TP120 0.45	SOIL	Chrysotile	Chrysotile present as fibre bundle	Jeff Cruddas
1017287	TP121 1.40	SOIL	Amosite	Amosite present as fibre bundles	Jeff Cruddas
1017288	TP122 0.80	SOIL	NAD	none	Jeff Cruddas
1017289	TP123 0.30	SOIL	Amosite	Amosite present as fibre bundle	Jeff Cruddas
1017290	TP124 0.50	SOIL	Chrysotile	Chrysotile present in bitumen fragments	Jeff Cruddas
1017291	TP125 0.00-1.30	SOIL	NAD	none	Jeff Cruddas
1017292	TP127 A	SOIL	NAD	none	Keith Wilson
1017293	TP128 B	SOIL	NAD	none	Keith Wilson
1017296	TP130 1.00	SOIL	NAD	none	Keith Wilson
1017297	TP131 1.20	SOIL	Crocidolite Chrysotile	Small bundles of Chrysotile \& Crocidolite fibres	Keith Wilson
1017298	TP132 1.10	SOIL	NAD	none	Keith Wilson
1017299	TP133 0.50	SOIL	Amosite	Small bundle of Amosite fibres	Keith Wilson
1017300	TP134 0.60	SOIL	NAD	none	Keith Wilson
1017303	TP138 0.40	SOIL	NAD	none	Keith Wilson
1017306	TP140 0.00-0.30	SOIL	NAD	none	Keith Wilson
1017307	TP140 2.00	SOIL	NAD	none	Keith Wilson
1017308	TP141 0.40	SOIL	NAD	none	Keith Wilson
1017309	TP142 0.00-0.15	SOIL	NAD	none	Keith Wilson
1017310	TP143 0.40-0.70	SOIL	NAD	none	Keith Wilson
1017311	TP144 0.00-0.15	SOIL	NAD	none	Keith Wilson
1017313	TP145 0.25-0.60	SOIL	NAD	none	Keith Wilson
1017315	TP150 0.00-0.50	SOIL	Crocidolite	Small bundle of Crocidolite fibres	Keith Wilson
1017316	TP151 0.00-0.50	SOIL	NAD	none	Keith Wilson
1017317	TP152 0.00-0.50	SOIL	Chrysotile	Small bundle of Chrysotile fibres	Keith Wilson

Summary of Asbestos Analysis

Soil Samples

Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn
Lab No Sample ID Material Type Result Comment* Analyst
Crocidolite $=$ Blue Asbestos, Amosite $=$ Brown Asbestos, Chrysotile $=$ White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Summary of Asbestos Quantification Analysis

Soil Samples
Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

	Lab No	1017262	1017264	1017278	1017281
	ample ID	TP101	TP104A	TP114	TP116
	Depth	0.50-1.00	0.00-1.00	0.00-0.25	0.00-0.30
	Other ID				
	ple Type	SOIL	SOIL	SOIL	SOIL
Sam	ing Date	20/06/16	20/06/16	21/06/16	21/06/16
Sam	ing Time				
od	Units				
1102	Mass \%	0.001	0.057	0.006	0.008
1102	Mass \%	na	0.057	na	na
1102	Mass \%	0.001	<0.001	0.006	0.008
1102	Mass \%	na	na	na	na
1102	Fibres/g	na	nа	na	

Test	Method Units					
Total Mass\% Asbestos (a+b+c)	DETSC 1102	Mass \%	0.001	0.057	0.006	0.008
Gravimetric Quantification (a)	DETSC 1102	Mass \%	na	0.057	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass \%	0.001	<0.001	0.006	0.008
Quantification by PCOM (c)	DETSC 1102	Mass \%	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na

Breakdown of Gravimetric Analysis (a)

Mass of Sample		g	502.23	1371.50	379.45	182.94
ACMs present ${ }^{*}$		type		Bitumen		
Mass of ACM in sample	g		9.70			
$\%$ ACM by mass		$\%$		0.71		
$\%$ asbestos in ACM		$\%$		8		
$\%$ asbestos in sample	$\%$		0.057			

Breakdown of Detailed Gravimetric Analysis (b)

\% Amphibole bundles in sample		Mass \%	<0.001	na	na	na
\% Chrysotile bundles in sample		Mass \%	<0.001	<0.001	0.006	0.008

Breakdown of PCOM Analysis (c)

\% Amphibole fibres in sample	Mass \%	na	na	na	na
\% Chrysotile fibres in sample	Mass \%	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)					
Amphibole fibres	Fibres/g	na	na	na	na
Chrysotile fibres	Fibres/g	na	na	na	na

[^4]
Summary of Asbestos Quantification Analysi

Soil Samples
Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Lab No	1017287	1017289	1017297	1017299
Sample ID	TP121	TP123	TP131	TP133
Depth	1.40	0.30	1.20	0.50
Other ID				
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	$22 / 06 / 16$	$22 / 06 / 16$	$23 / 06 / 16$	$23 / 06 / 16$
Sampling Time				

Test	Method Units					
Total Mass\% Asbestos (a+b+c)	DETSC 1102	Mass \%	< 0.001	< 0.001	< 0.001	<0.001
Gravimetric Quantification (a)	DETSC 1102	Mass \%	na	na	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass \%	<0.001	<0.001	<0.001	<0.001
Quantification by PCOM (c)	DETSC 1102	Mass \%	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na

Breakdown of Gravimetric Analysis (a)

Mass of Sample		g	1083.29	1204.29	1036.29
ACMs present*		1038.35			
Mass of ACM in sample		type			
$\%$ ACM by mass		g			
$\%$ asbestos in ACM		$\%$			
$\%$ asbestos in sample		$\%$			

Breakdown of Detailed Gravimetric Analysis (b)

\% Amphibole bundles in sample		Mass \%	<0.001	<0.001	<0.001	<0.001
\% Chrysotile bundles in sample		Mass \%	na	na	<0.001	na

Breakdown of PCOM Analysis (c)

\% Amphibole fibres in sample	Mass \%	na	na	na	na
\% Chrysotile fibres in sample	Mass \%	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)					
Amphibole fibres	Fibres/g	na	na	na	na
Chrysotile fibres	Fibres/g	na	na	na	na

* Denotes test or material description outside of UKAS accreditation. \% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264.
Recommended sample size for quantification is approximately 1 kg \# denotes deviating sample

Summary of Asbestos Quantification Analysi

Soil Samples
Our Ref 16-71697-1
Client Ref C7074
Contract Title Hebburn

Lab No	1017315	1017317
Sample ID	TP150	TP152
Depth	$0.00-0.50$	$0.00-0.50$
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	$24 / 06 / 16$	$24 / 06 / 16$
Sampling Time		

Test
Method
Units Total Mass\% Asbestos (a+b+c) DETSC 1102 Mass \% $<\mathbf{0 . 0 0 1}$ $<\mathbf{0 . 0 0 1}$ Gravimetric Quantification (a) DETSC 1102 Mass \% na na Detailed Gravimetric Quantification (b) DETSC 1102 Mass \% <0.001 <0.001 Quantification by PCOM (c) DETSC 1102 Mass \% na na Potentially Respirable Fibres (d) DETSC 1102 Fibres/g na na

Breakdown of Gravimetric Analysis (a)

Mass of Sample		g	1132.36
ACMs present*		type	
Mass of ACM in sample		g	
\% ACM by mass		$\%$	
$\%$ asbestos in ACM		$\%$	
$\%$ asbestos in sample		$\%$	

Breakdown of Detailed Gravimetric Analysis (b)

\% Amphibole bundles in sample		Mass \%	<0.001	na
\% Chrysotile bundles in sample		Mass \%	na	<0.001

Breakdown of PCOM Analysis (c)

\% Amphibole fibres in sample		Mass \%	na	na
\% Chrysotile fibres in sample		Mass \%	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)		Fibres/g	na	na
Amphibole fibres		Fibres/g	na	na
Chrysotile fibres				

[^5]
Information in Support of the Analytical Results

Our Ref 16-71697-1
Client Ref C7074
Contract Hebburn

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
1017262	TP101 0.50-1.00 SOIL	20/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017263	TP103 3.00 SOIL	20/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017264	TP104A 0.00-1.00 SOIL	20/06/16	GV, PT 1L		
1017265	TP105 0.20-0.80 SOIL	20/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017266	TP105 1.00-1.50 SOIL	20/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017267	TP106 0.20-0.60 SOIL	20/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017268	TP106 1.00-1.50 SOIL	20/06/16	GJ 250ml, GV, PT 1L	$\mathrm{pH}+$ Conductivity (7 days)	
1017269	TP107 0.20-0.70 SOIL	21/06/16	GJ 250ml, GV, PT 1L	$\mathrm{pH}+$ Conductivity (7 days)	
1017270	TP108 0.00-0.40 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017271	TP109 0.00-0.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017272	TP110 0.00-0.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017273	TP111 0.00-0.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017274	TP112 0.00-0.20 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017275	TP112 1.00 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017276	TP112 3.00 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017277	TP113 0.00-0.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017278	TP114 0.00-0.25 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017279	TP115 0.00-0.25 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017280	TP115 0.25-1.00 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017281	TP116 0.00-0.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017282	TP116 2.00 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017283	TP118 0.90-1.30 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017284	TP118 1.30-2.00 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017285	TP119 0.20-0.50 SOIL	21/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017286	TP120 0.45 SOIL	22/06/16	GV, PT 1L		
1017287	TP121 1.40 SOIL	22/06/16	GV, PT 1L		
1017288	TP122 0.80 SOIL	22/06/16	GV, PT 1L		
1017289	TP123 0.30 SOIL	22/06/16	GV, PT 1L		
1017290	TP124 0.50 SOIL	22/06/16	GV, PT 1L		
1017291	TP125 0.00-1.30 SOIL	22/06/16	GV, PT 1L		
1017292	TP127 SOIL	22/06/16	GV, PT 1L		
1017293	TP128 SOIL	22/06/16	GV, PT 1L		
1017294	TP129 0.10 SOIL	22/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017295	TP129 0.90 SOIL	22/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017296	TP130 1.00 SOIL	23/06/16	GV, PT 1L		
1017297	TP131 1.20 SOIL	23/06/16	GV, PT 1L		
1017298	TP132 1.10 SOIL	23/06/16	GV, PT 1L		
1017299	TP133 0.50 SOIL	23/06/16	GV, PT 1L		
1017300	TP134 0.60 SOIL	23/06/16	GV, PT 1L		
1017301	TP137 0.90 SOIL	23/06/16	GJ 250 ml , GV	pH + Conductivity (7 days)	
1017302	TP137 1.30 SOIL	23/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017303	TP138 0.40 SOIL	23/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017304	TP139 0.50 SOIL	23/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017305	TP139 1.00 SOIL	23/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017306	TP140 0.00-0.30 SOIL	23/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017307	TP140 2.00 SOIL	23/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017308	TP141 0.40 SOIL	24/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017309	TP142 0.00-0.15 SOIL	24/06/16	GV, PT 1L	pH + Conductivity (7 days)	
1017310	TP143 0.40-0.70 SOIL	24/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	

Information in Support of the Analytical Results

Our Ref 16-71697-1

Client Ref C7074
Contract Hebburn

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
1017311	TP144 0.00-0.15 SOIL	24/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017312	TP144 0.30-0.70 SOIL	24/06/16	GJ 250ml, GV, PT 1L	pH + Conductivity (7 days)	
1017313	TP145 0.25-0.60 SOIL	24/06/16	GJ 250 ml , GV, PT 1L	pH + Conductivity (7 days)	
1017314	TP147 0.40-0.60 SOIL	24/06/16	GJ 250 ml , GV, PT 1L	pH + Conductivity (7 days)	
1017315	TP150 0.00-0.50 SOIL	24/06/16	GV, PT 1L		
1017316	TP151 0.00-0.50 SOIL	24/06/16	GV, PT 1L		
1017317	TP152 0.00-0.50 SOIL	24/06/16	GV, PT 1L		
Key: G-Glass P-Plastic J-Jar V-Vial T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+/-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

Method	Parameter	Units	Limit of Detection	Sample Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	\%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	$\mathrm{mg} / \mathrm{kg}$	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg / l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	\%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	\%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	$\mathrm{mg} / \mathrm{kg}$	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	$\mathrm{mg} / \mathrm{kg}$	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	$\mathrm{mg} / \mathrm{kg}$	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	$\mathrm{mg} / \mathrm{kg}$	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	$\mathrm{mg} / \mathrm{kg}$	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	$\mathrm{mg} / \mathrm{kg}$	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	$\mathrm{mg} / \mathrm{kg}$	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	$\mathrm{mg} / \mathrm{kg}$	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	- Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

Method	Parameter	Units	Limit of Detection	Sample Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c, d) pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate of Analysis

Certificate Number 16-74411
03-Aug-16

```
Client Sirius Geotechnical & Environmental
    Russel House
    Suite 2
    Mill Road
    Langley Moor
    DH7 8HJ
    Our Reference 16-74411
Client Reference C7074
    Order No 13916/C7074
    Contract Title Hebburn
    Description 5 Water samples.
Date Received 28-Jul-16
    Date Started 28-Jul-16
Date Completed 03-Aug-16
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.
```

Approved By

Rob Brown
Business Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Water Samples
Our Ref 16-74411
Client Ref C7074
Contract Title Hebburn

Test	Method	Lab NoSample IDDepthOther IDSample TypeSampling DateSampling Time		1030752	1030753	1030754	1030755	1030756
				WS101	WS102	WS103	WS104	WS104
				WATER	WATER	WATER	WATER	WATER
				n/s	n / s	n/s	n/s	n / s
				1330	1400	1430	1500	1530
		LOD	Units					
Metals								
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.5	0.76	0.62	1.1	0.78
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.03	<0.03	0.25	< 0.03	0.27
Chromium, Dissolved	DETSC 2306	0.25	ug/l	11	3.3	3.6	< 0.25	1.2
Copper, Dissolved	DETSC 2306	0.4	ug/l	5.9	2.6	5.8	1	4.3
Lead, Dissolved	DETSC 2306	0.09	ug/l	3.4	< 0.09	0.85	0.35	0.12
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	6.4	3.4	2.8	2.2	4.3
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.62	1.4	5.5	< 0.25	1.2
Zinc, Dissolved	DETSC 2306	1.3	ug/l	18	1.9	100	3.7	190
Inorganics								
Conductivity	DETSC 2009	1	uS/cm	630	1090	1440	1410	2010
pH	DETSC 2008			8.4	7.9	7.7	8.2	7.9
Hardness	DETSC 2303	0.1	mg / l	326	486	811	916	1340
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Sulphate as SO4	DETSC 2055	0.1	mg / l	130	270	140	430	760
PAHs								
Naphthalene	DETS 074*	0.01	ug/I	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Acenaphthylene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETS 074*	0.01	ug/l	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETS 074*	0.01	ug/l	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETS 074*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETS 074*	0.2	ug/l	<0.20	<0.20	<0.20	< 0.20	<0.20
Phenols								
Phenol	*	0.5	ug/l	<0.50	<0.50	< 0.50	< 0.50	<0.50

Information in Support of the Analytical Results

Our Ref 16-74411
Client Ref C7074
Contract Hebburn

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
1030752	WS101 WATER		GJ 250ml, GB 1L	Sample date+time not supplied, Conductivity (28 days), Conductivity (non reportable) (28 days), Hardness (7 days), Anions (30 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), Ammoniacal Nitrogen as N(10 days), PAH LC (14 days), Phenols MS (21 days)	
1030753	WS102 WATER		GB 1L	Sample date+time not supplied, Conductivity (28 days), Conductivity (non reportable) (28 days), Hardness (7 days), Anions (30 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), Ammoniacal Nitrogen as N (10 days), PAH LC (14 days), Phenols MS (21 days)	
1030754	WS103 WATER		GJ 250ml, GB 1L	Sample date+time not supplied, Conductivity (28 days), Conductivity (non reportable) (28 days), Hardness (7 days), Anions (30 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), Ammoniacal Nitrogen as N (10 days), PAH LC (14 days), Phenols MS (21 days)	
1030755	WS104 WATER		GJ 250ml, GB 1L	Sample date+time not supplied, Conductivity (28 days), Conductivity (non reportable) (28 days), Hardness (7 days), Anions (30 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), Ammoniacal Nitrogen as N(10 days), PAH LC (14 days), Phenols MS (21 days)	
1030756	WS104 WATER		GB 1L	Sample date+time not supplied, Conductivity (28 days), Conductivity (non reportable) (28 days), Hardness (7 days), Anions (30 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), Ammoniacal Nitrogen as N (10 days), PAH LC (14 days), Phenols MS (21 days)	

Key: G-Glass J-Jar B-Bottle
DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Information in Support of the Analytical Results

Our Ref 16-74411
Client Ref C7074
Contract Hebburn

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Asbestos Bulk Analysis Report (PLM)

Date Received:	07/07/2016	Client:	Sirius Geotechnical \& Environmental Ltd
Date of Analysis:	08/07/2016		Sirius Geotechnical \& Environmental
			Ltd
Samples Analysed by:	Victoria Edgar		Suite 2
			Russel House
			Mill Road
Samples Taken by:	Sirius Geotechnical \& Environmental		Langley Moor
	Ltd		Durham
			DH7 8HJ
No. of Samples:	4	Site	Hebburn
		Address	

Franks Portlock Consulting Limited project number: J006314

FPC Ltd ref	Sample Descriptions	Materials	Asbestos identified
BS009698	TP123 Bit A	Bituminous	No Asbestos Detected
BS009699	TP123 Felt A	Bituminous	No Asbestos Detected
BS009700	TP125 Paper 1	Paper	No Asbestos Detected
BS009701	TP125 Cardboard 1	Paper	No Asbestos Detected

Notes:

Sample analysis conducted in accordance with in-house procedure Tech04 and HSG248 using PLM (polarised light microscopy) Where the samples have been taken by persons other than Franks Portlock Consulting Limited staff we cannot accept responsibility for the accuracy of the sampling. Analysis represents the contents of the sample received and may not necessarily be representative of the material from which it originated. Samples will be retained for 6 months prior to disposal unless otherwise stated.

Note: Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Report Authorised by:	Victoria Edgar	Date:	8 Jul 2016
Signed:	Ed	Position:	Bulk Analyst

Contract Number: PSL16/3014

Report Date:	19 July 2016
Client's Reference:	C7074
Client Name:	Sirius Durham Suite 2, Russel House Mill Road Langley Moor Durham DH7 8HJ
For the attention of: Rob Schofield	
Contract Title:	Former Siemen's Factory, Hebburn
Date Received: Date Commenced: Date Completed:	$29 / 06 / 2016$

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson
(Director)

D Lambe
(Senior Technician)
A Watkins
(Director)

S Royle
(Senior Technician)

5-7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR
tel: +44 (0)844 $815 \mathbf{6 6 4 1}$
fax: +44 (0)844 8156642
e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	
TP112		B	2.00		Brown slightly gravelly sandy CLAY.
TP112		B	4.00		Brown slightly gravelly sandy CLAY.
TP116		B	1.00		Brown slightly gravelly sandy CLAY.
TP116		B	3.00		Brown slightly gravelly sandy CLAY.
TP140		B	3.00		Brown slightly gravelly sandy CLAY.
BH101		B	5.50	6.00	Brown slightly gravelly slighty sandy CLAY.
BH101		B	7.50	8.00	Brown slightly gravelly slighty sandy CLAY.
BH102		B	4.50	5.00	Brown slightly gravelly sandy CLAY.
TP104		D	1.00	1.50	Brown slightly gravelly sandy CLAY.
TP109		D	0.50	1.00	Brown slightly gravelly sandy CLAY.
TP111		D	1.40	1.60	Brown slightly gravelly sandy CLAY.
TP115		D	1.00	1.30	Brown slightly gravelly sandy CLAY.
TP135		D	1.60		Brown slightly gravelly sandy CLAY.
TP137		D	1.30		Brown slightly gravelly sandy CLAY.
TP138		D	1.00		Brown slightly gravelly sandy CLAY.
TP139		D	1.00		Brown slightly gravelly sandy CLAY.
TP141		D	1.10		Brown slightly gravelly sandy CLAY.
TP143		D	1.50	2.00	Brown slightly gravelly sandy CLAY.
TP144		D	1.60	1.80	Brown slightly gravelly sandy CLAY.

da$\substack{\text { UKAS } \\ \text { TSSHAG } \\ 4043}$	(1)	Checked / Approved	cras	Date	19/07/16	Contract No:
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
						C7074

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	
TP145		D	0.90	$\mathbf{1 . 1 0}$	Brown slightly gravelly sandy CLAY.
TP147		D	$\mathbf{1 . 2 0}$	1.50	Brown slightly gravelly sandy CLAY.
TP149		D	$\mathbf{1 . 1 0}$	$\mathbf{1 . 5 0}$	Brown slightly gravelly sandy CLAY.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content \% Clause 3.2	Linear Shrinkage $\%$ Clause 6.5	Particle Density $\mathbf{M g} / \mathrm{m}^{3}$ Clause 8.2	Liquid Limit \% Clause 4.3/4	Plastic Limit \% Clause 5.3	Plasticity Index $\%$ Clause 5.4	Passing .425mm \%	Remarks
TP112		B	2.00		21							
TP112		B	4.00		19							
TP116		B	1.00		21							
TP116		B	3.00		22							
TP140		B	3.00		26							
BH101		B	5.50	6.00	30							
BH101		B	7.50	8.00	32							
BH102		B	4.50	5.00	25							
TP104		D	1.00	1.50	21			42	21	21	98	Intermediate plasticity CI.
TP109		D	0.50	1.00	25			50	24	26	98	Intermediate plasticity CI.
TP111		D	1.40	1.60	23			48	24	24	98	Intermediate plasticity CI.
TP115		D	1.00	1.30	22			49	23	26	98	Intermediate plasticity CI.
TP135		D	1.60		19			40	20	20	98	Intermediate plasticity CI.
TP137		D	1.30		18			45	22	23	97	Intermediate plasticity CI.
TP138		D	1.00		21			42	21	21	97	Intermediate plasticity CI.
TP139		D	1.00		22			49	23	26	98	Intermediate plasticity CI.
TP141		D	1.10		24			50	24	26	98	Intermediate plasticity CI.
TP143		D	1.50	2.00	20			43	21	22	98	Intermediate plasticity CI.
TP144		D	1.60	1.80	20			40	20	20	98	Intermediate plasticity CI.

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

	-	Checked / Approved	cras	Date	19/07/16	Contract No:
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
						C7074

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(BS5930 :2015)

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	$\begin{gathered} \hline \text { Moisture } \\ \text { Content } \\ \% \\ \text { Clause } 3.2 \\ \hline \end{gathered}$	Linear Shrinkage \% Clause 6.5	Particle Density $\mathrm{Mg} / \mathrm{m}^{3}$ Clause 8.2	Liquid Limit \% Clause 4.3/4	$\begin{gathered} \hline \text { Plastic } \\ \text { Limit } \\ \% \\ \text { Clause } 5.3 \end{gathered}$	```Plasticity ```	Passing .425mm \%	Remarks
TP145		D	0.90	1.10	18			44	21	23	95	Intermediate plasticity CI.
TP147		D	1.20	1.50	23			50	24	26	98	Intermediate plasticity CI.
TP149		D	1.10	1.50	19			42	20	22	98	Intermediate plasticity CI.

SYMBOLS: NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

		Checked / Approved	cisas	Date	19/07/16	Contract No:
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
						C7074

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(BS5930 :2015)

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990
Hole Number:
TP112

Sample Number:
Sample Type:

B

Initial Moisture Content:	21	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.60	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.73	Material Retained on 20.0 mm Test Sieve (\%):		
Optimum Moisture Content (\%):	18		0	
Remarks See summary of soil descriptions				

(\$		Checked / Approved	Hes	Date	19/07/16	Contract No.
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C707

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990

Hole Number:

TP112
Top Depth (m) :
4.00

Sample Number:
Base Depth (m) :
Sample Type:

B

Initial Moisture Content:	19	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.60	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.75	Material Retained on 20.0 mm Test Sieve (\%):	0	
Optimum Moisture Content (\%):	16			
Remarks See summary of soil descriptions				

雷	(31/	Checked / Approved	Hes	Date	19/07/16	Contract No.
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C7074

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990

Hole Number:

Sample Number:
Sample Type:

Top Depth (m) :
1.00

Base Depth (m) :

B

Initial Moisture Content:	21	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.72	Material Retained on 20.0 mm Test Sieve (\%):		
Optimum Moisture Content (\%):	18		0	
Remarks See summary of soil descriptions				

क	Par	Checked / Approved	Hos	Date	19/07/16	Contract No.
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C70

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990

Hole Number:

TP116
Top Depth (m) :
3.00

Sample Number:
Base Depth (m) :
Sample Type:

B

Initial Moisture Content:	22	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.55	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.65	Material Retained on 20.0 mm Test Sieve (\%):	0	
Optimum Moisture Content (\%):	19			
Remarks See summary of soil descriptions				

雷	(31/	Checked / Approved	Hes	Date	19/07/16	Contract No.
		Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C7074

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990
Hole Number:
TP140
Top Depth (m) :
3.00

Sample Number:
Base Depth (m) :
Sample Type:
B

Initial Moisture Content:	26	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density $(\mathrm{Mg} / \mathrm{m} 3):$	2.55	Assumed	Material Retained on 37.5 mm Test Sieve $(\%):$	0
Maximum Dry Density $(\mathrm{Mg} / \mathrm{m} 3):$	1.65	Material Retained on 20.0 mm Test Sieve $(\%):$	0	
Optimum Moisture Content (\%):	19			
Remarks See summary of soil descriptions				

		Checked / Approved	cexos	Date	19/07/16	Contract No.
		Former Siemen's Factory, Hebburn				PSL16/3014
UKAS	Professional Soils Laboratory					Client Ref
4043						C7074

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990
Hole Number:
BH101
Top Depth (m) :
5.50
Sample Number:
Base Depth (m) :
6.00

Sample Type: B

Initial Moisture Content:	30	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.50	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.51	Material Retained on 20.0 mm Test Sieve (\%):	0	
Optimum Moisture Content (\%):	21			
Remarks See summary of soil descriptions				

雷		Checked / Approved	esuos	Date	19/07/16	Contract No.
	O	Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C7074

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990
Hole Number:
BH101
Top Depth (m) :
7.50
Sample Number:
Base Depth (m) :
8.00

Sample Type: B

Initial Moisture Content:	32	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density (Mg/m3):	2.50	Assumed	Material Retained on 37.5 mm Test Sieve (\%):	0
Maximum Dry Density (Mg/m3):	1.53	Material Retained on 20.0 mm Test Sieve (\%):	0	
Optimum Moisture Content (\%):	24			
Remarks See summary of soil descriptions				

+		Checked / Approved	tous	Date	19/07/16	Contract No.
	,	Former Siemen's Factory, Hebburn				PSL16/3014
USAS	Professional Soils Laboratory					Client Ref
4043						C7074

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377 : Part 4 : 1990
Hole Number:
BH102
Top Depth (m) :
4.50
Sample Number:
Base Depth (m) :
5.00

Sample Type: B

Initial Moisture Content:	25	Method of Compaction:	2.5Kg Rammer	Separate Samples
Particle Density $(\mathrm{Mg} / \mathrm{m} 3):$	2.50	Assumed	Material Retained on 37.5 mm Test Sieve $(\%):$	0
Maximum Dry Density $(\mathrm{Mg} / \mathrm{m} 3):$	1.64	Material Retained on 20.0 mm Test Sieve $(\%):$	0	
Optimum Moisture Content (\%):	19			
Remarks See summary of soil descriptions				

雷		Checked / Approved	esuos	Date	19/07/16	Contract No.
	O	Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref
4043						C7074

CALIFORNIA BEARING RATIO TEST

BS 1377 : Part 4 : 1990
Hole Number:
TP112

Sample Number:
Top Depth (m):
2.00

Base Depth (m):

Sample Type:
B

—— Top ——Bottom

Initial Sample Conditions		Sample Preparation		Final Moisture Content \%		C.B.R. Value \%	
Moisture Content:	21	Surcharge Kg:	4.20	Sample Top	21	Sample Top	3.8
Bulk Density Mg/m3:	2.03	Soaking Time hrs	0	Sample Bottom	21	Sample Bottom	4.2
Dry Density Mg/m3:	1.68	Swelling mm:	0	Remarks: See summary of soil descriptions.			
Percentage retained on 20 mm BS test sieve:			0				
Compaction Conditions		2.5 kg Rammer					

क		Checked / Approved	1800	Date	18/07/16	Contract No:
	$\bigcirc 1$	Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
4043						C707

CALIFORNIA BEARING RATIO TEST

BS 1377 : Part 4 : 1990
Hole Number: TP116

Sample Number:
Top Depth (m):
1.00

Sample Type:
B

Initial Sample Conditions		Sample Preparation		Final Moisture Content \%		C.B.R. Value \%	
Moisture Content:	21	Surcharge Kg:	4.20	Sample Top	21	Sample Top	4.2
Bulk Density Mg/m3:	2.03	Soaking Time hrs	0	Sample Bottom	22	Sample Bottom	3.4
Dry Density Mg/m3:	1.67	Swelling mm:	0	Remarks: See summary of soil descriptions.			
Percentage retained on 20mm BS test sieve:			0				
Compaction Conditions		2.5 kg Rammer					

क		Checked / Approved	1800	Date	18/07/16	Contract No:
	$\bigcirc 1$	Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
4043						C707

CALIFORNIA BEARING RATIO TEST

BS 1377 : Part 4 : 1990

Hole Number:	BH101	Top Depth (m):	5.50
Sample Number:		Base Depth (m):	$\mathbf{6 . 0 0}$
Sample Type:	B		

Initial Sample Conditions		Sample Preparation		Final Moisture Content \%		C.B.R. Value \%	
Moisture Content:	30	Surcharge Kg:	4.20	Sample Top	30	Sample Top	0.9
Bulk Density Mg/m3:	1.85	Soaking Time hrs	0	Sample Bottom	30	Sample Bottom	1.0
Dry Density Mg/m3:	1.42	Swelling mm:	0	Remarks: See summary of soil descriptions.			
Percentage retained on 20 mm BS test sieve:			0				
Compaction Conditions		2.5 kg Rammer					

-		Checked / Approved	1800	Date	18/07/16	Contract No:
		Former Siemen's Factory, Hebburn				PSL16/3014
UKAS	Professional Soils Laboratory					Client Ref:
4043						C7074

CALIFORNIA BEARING RATIO TEST

BS 1377 : Part 4 : 1990

Hole Number:	BH101	Top Depth (m):	7.50
Sample Number:		Base Depth (m):	$\mathbf{8 . 0 0}$
Sample Type:	B		

——op Bottom

Initial Sample Conditions	Sample Preparation		Final Moisture Content \%		C.B.R. Value \%					
Moisture Content:	32	Surcharge Kg:	4.20	Sample Top	32	Sample Top	0.8			
Bulk Density Mg/m3:	1.82	Soaking Time hrs	0	Sample Bottom	32	Sample Bottom	0.7			
Dry Density Mg/m3:	1.38	Swelling mm:	0	Remarks: See summary of soil descriptions.						
Percentage retained on 20mm BS test sieve:	0									
Compaction Conditions							2.5 kg Rammer			

CALIFORNIA BEARING RATIO TEST

BS 1377 : Part 4 : 1990

Hole Number:	BH102	Top Depth (m):	4.50
Sample Number:		Base Depth (m):	5.00
Sample Type:	B		

Initial Sample Conditions		Sample Preparation		Final Moisture Content \%		C.B.R. Value \%	
Moisture Content:	25	Surcharge Kg:	4.20	Sample Top	25	Sample Top	2.0
Bulk Density Mg/m3:	1.89	Soaking Time hrs	0	Sample Bottom	25	Sample Bottom	2.1
Dry Density Mg/m3:	1.51	Swelling mm:	0	Remarks: See summary of soil descriptions.			
Percentage retained on 20mm BS test sieve:			0				
Compaction Conditions		2.5 kg Rammer					

क		Checked / Approved	1800	Date	18/07/16	Contract No:
	$\bigcirc 1$	Former Siemen's Factory, Hebburn				PSL16/3014
	Professional Soils Laboratory					Client Ref:
4043						C707

Certificate of Analysis

Certificate Number 16-72222

Client Professional Soils Laboratory Ltd
 5/7 Hexthorpe Road
 Hexthorpe
 DNA OAR

Our Reference 16-72222
Client Reference PSL16/3014
Order No (not supplied)
Contract Title Former Siemens's Factory, Hebburn
Description 8 Soil samples.
Date Received 08-Jul-16
Date Started 08-Jul-16
Date Completed 12-Jul-16
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown
Business Manager

Summary of Chemical Analysis

Soil Samples

Our Ref 16-72222
Client Ref PSL16/3014
Contract Title Former Siemen's Factory, Hebburn

Lab No	1020124	1020125	1020126	1020127	1020128	1020129	1020130	1020131
Sample ID	TP104	TP109	TP111	TP137	TP138	TP141	TP144	TP145
Depth	1.00-1.50	0.50-1.00	1.40-1.60	1.30	1.00	1.10	1.60-1.80	0.90-1.10
Other ID								
Sample Type	SOIL							
Sampling Date	n / s	n/s	n / s	n / s				
Sampling Time	n / s							

Test	Method	LOD	Units								
Inorganics											
pH	DETSC 2008\#			7.3	7.8	8.3	8.5	8.6	7.9	8.1	8.2
Sulphate Aqueous Extract as SO4	DETSC 2076\#	10	mg / l	45	170	72	24	180	130	150	140

Information in Support of the Analytical Results

Our Ref 16-72222
Client Ref PSL16/3014
Contract Former Siemen's Factory, Hebburn

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
1020124	TP104 1.00-1.50 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020125	TP109 0.50-1.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020126	TP111 1.40-1.60 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020127	TP137 1.30 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020128	TP138 1.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020129	TP141 1.10 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020130	TP144 1.60-1.80 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
1020131	TP145 0.90-1.10 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), pH + Conductivity (7 days)	
Key: P-Plastic T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+/-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX F
SIRIUS GENERIC ASSESSMENT CRITERIA

The Sirius Group
 Stage 1 Threshold Concentrations for Clean Cover Material for Use in Gardens of Private Residential Properties

Based on sandy soil at a range of soil organic matter contents and assuming a standard residential with gardens land use. Alternative criteria may be specified for other soil types and SOM contents, for soils placed at depth, or for other land uses.

Notes:

* Soil organic matter; \%SOM = 1.724 * \%TOC
** Soils must meet the specified criteria for each component AND the sum of 16 PAHs. The total is specified to prevent unsuitable materials being placed as cover. Where an individual PAH is not shown, then its criterion is greater than that for the sum or it is a genotoxic PAH assessed by using benzo(a)pyrene as a surrogate marker.
${ }^{+}$Soils must meet the specified criteria for each component and the Hazard Index for TPH must be <1.0. The sum of TPH fractions must also be met to prevent unsuitable materials being placed as cover. Where an individual TPH fraction has a criterion greater than that for the sum of TPH fractions, the value is solely provided for the calculation of the Hazard Index.
\ddagger Components other than benzene are not genotoxic carcinogens and therefore assessed as part of the TPH mixture
Soils must have no visual or olfactory evidence of contamination.

GAC VALUES FOR CONTROLLED WATERS IN ENGLAND AND WALES

Parameter	GAC ($\mu \mathrm{g} / \mathrm{l}$, unless stated)			Notes
	Inland waters		Coastal and transition waters	
	EQS	DWS	EQS	
Metals and metalloids				
Arsenic	50	10	25	1
Cadmium	See separate table	5	0.2	1,2
Chromium (total)	4.7	50	N.A.	1,3
Copper	1.0 (bioavailable)	2000	3.76	1,4
Lead	1.2 (bioavailable)	10	1.3	1,4
Mercury	0.07	1.0	0.07	1, 4, 5
Nickel	4.0 (bioavailable)	20	8.6	1,4
Zinc	$\begin{gathered} 10.9 \text { (bioavailable) + } \\ \text { background } \\ \hline \end{gathered}$	5000	6.8 + background	1,4,6
Misc. inorganics				
Ammonia (total, as N)	See separate table	N.A.	N.A.	7
Ammonia (total, as NH^{+})	N.A.	500	N.A.	
Ammonia (un-ionised (NH3), as N)	N.A.	N.A.	21	7
Sulphate	$400 \mathrm{mg} / \mathrm{l}$	$250 \mathrm{mg} / \mathrm{l}$	N.A.	8
Petroleum hydrocarbons and related				
TPH (speciated analysis) per fraction	10	10	10	9,10
Benzene	10	1.0	8	
Toluene	74	700	74	11
Xylenes (sum)	N.A.	500	N.A.	11
MTBE	2600	200	2600	12,13
PAHs				
Anthracene	0.1	N.A.	0.1	
Benzo(b)fluoranthene + Benzo(k)fluoranthene (sum)	N.A.	Sum of $4=0.1$	N.A.	
Benzo(g,t,i)perylene + indeno(1,2,3-c,d)pyrene (sum)	N.A.		N.A.	
Benzo(a)pyrene	$1.7 \mathrm{E}-04$	0.01	1.7E-04	
Fluoranthene	0.0063	N.A.	0.0063	
Naphthalene	2.0	N.A.	2.0	
Phenol				
Phenol	7.7	0.5	7.7	
Chlorinated organics				
Dichloromethane	20	N.A.	20	
Trichloromethane (chloroform)	2.5	100	2.5	14
Tetrachloromethane (carbon tetrachloride)	12	3.0	12	
1,2-dichloroethane (1,2-DCA)	10	N.A.	10	
1,1,1-trichloroethane (1,1,1-TCA)	100	N.A.	100	

Cadmium - inland waters EQS	
Hardness (as mg / I CaCO3)	EQS $(\mu \mathrm{g} / \mathrm{l})$
<40	0.08
$40-50$	0.08
$50-100$	0.09
$100-200$	0.15
$>=200$	0.25

Ammonia - inland waters EQS		
Alkalinity (as mg / I CaCO3)	Altitude	EQS ($\mu \mathrm{g} / \mathrm{I}$)
<10	Any	300
$10-50$	Any	300
$50-100$	$<80 \mathrm{~m}$	600
$50-100$	$>80 \mathrm{~m}$	300
$100-200$	$<80 \mathrm{~m}$	600
$100-200$	$>80 \mathrm{~m}$	300
>200	Any	600

Parameter	GAC ($\mu \mathrm{g} / \mathrm{l}$, unless stated)			Notes
	Inland waters		Coastal and transition waters	
	EQS	DWS	EQS	
1,1,2-trichloroethane (1,1,2-TCA)	400	N.A.	300	
Trichloroethene (TCE)	10	Sum of $2=10$	10	
Tetrachloroethene (PCE)	10		10	
Vinyl chloride	N.A.	0.5	N.A.	

Notes referenced in table:

1. Metals and metalloid EQS relate to dissolved contamination only (i.e. analysis of filtered samples),
2. Inland waters EQS for cadmium is dependent upon hardness or alkalinity of the receiving surface water. See separate table,
3. Separate EQS standards exist for Cr III and CrVI in fresh water. The fresh water Cr III has been value adopted as the screening value for total Cr analysis as it is normally the predominant form in solution. Specific EQS for $\mathrm{Cr} \mathrm{VI}(3.4 \mu \mathrm{~g} / \mathrm{lin}$ freshwater; $0.6 \mu \mathrm{~g} / \mathrm{I}$ in transition and coastal waters) must be applied where relevant.
4. The bioavailable concentration of copper, nickel and zinc in fresh water is dependent upon the $\mathrm{pH}, \mathrm{DOC}$ and calcium data for the receiving surface water. These data should be collected whenever possible to calculate an equivalent GAC for total metal concentration using the UKTAG m-BAT spreadsheet model. Although the standard indicates that lead should be assessed on a bioavilable basis, no tool is currently avaiable and this criterion should be applied as-is for screening purposes.
5. The value for mercury is the Maximum Acceptable Concentration (MAC) as no annual average EQS is specified in the legislation.
6. The EQS for zinc may be adjusted for the ambient uncontaminated background concentration in the receiving surface water where data are available.
7. EQS for ammonia in inland waters depends on the hardness and altitude of the receiving water body - see separate table. The criteria given here are based on the attainment of "good" chemical quality in the water body.
8. Inland waters EQS for sulphate is non-statutory (see: http://evidence.environment-agency.gov.uk/ChemicalStandards/home.aspx)
9. No concentration-based EQS values currently exist for TPH. In the absence of specific criteria, our recent discussions with the Environment Agency have led us to adopt $10 \mu \mathrm{~g} / \mathrm{I}$ for each individual fraction determined by speciated TPH (TPHCWG) analysis.
10. No concentration-based DWS exists for TPH. A sum TPH concentration of $200 \mu \mathrm{~g} /$ / defines the DW2 Class threshold limit in the Surface Water (Abstraction for Drinking Water) (Classification) Regulations 1996 ; DW2 waters are generally suitable for abstraction as drinking water supplies, subject to standard filtration and chemical treatment. We therefore consider that the $10 \mu \mathrm{~g} / \mathrm{Icriterion} \mathrm{for} \mathrm{each} \mathrm{fraction} \mathrm{provides} \mathrm{a} \mathrm{reasonable} \mathrm{and}$ proportionate basis for the initial assessment of risk posed to off-site groundwater and/or surface water potable abstractions that may be impacted at a downgradient abstraction point by TPH contamination originating from the site.
11. The drinking water-based criteria are from World Health Organisation (WHO) Guidelines for Drinking Water Quality, 2008. Taint may result at lower concentrations.
12. The "EQS" given here for MTBE is the PNEC value for fresh and sea water life given in: EU Risk Assessment Report (2002) MTBE, 3rd Priority List, volume 19.
13. DWS for MTBE is a 5 -fold dilution of the USEPA (1997) Drinking Water Advisory value for taint, EPA-822-F-97-009. Toxicological thresholds are significantly higher
14. Sum trihalomethanes limit for drinking water is $100 \mathrm{gg} / \mathrm{l}$ but chloroform is only compound of this class normally encountered at contaminated sites.

Sources and general comments

Unless otherwise stated, EQS-based GACs are annual average surface water quality criteria given in Table 1 within Part 3 (Priority Substances) or long-term average criteria given in Table 1 within Part 2 (Specific Pollutants) of The Water Framework Directive (Standards and Classification) Directions (England and Wales), 2015
Unless otherwise stated, drinking water standard-based GACs are taken from the Water Supply (Water Quality) (Amendment) Regulations 2000, 2001 and 2007 and relate to concentration at the supply point and/or consumers' taps.
This list presents recommended GAC values for commonly monitored analytes but is not exhaustive. A comprehensive list of current statutary criteria is given in the referenced legislation. Some additional criteria can also be found at: http://evidence.environment-agency.gov.uk/ChemicalStandards/home.aspx.

The Sirius Group
Generic Assessment Criteria for PAHs in Soils When Surrogate Marker Approach is Invalid

Parameter	Residential (mg/kg)						Commercial / Industrial ($\mathrm{mg} / \mathrm{kg}$)			Note
	With Homegrown Produce			Without Homegrown Produce						
	1\% SOM	2.5\% SOM	5\% SOM	1\% SOM	2.5\% SOM	5\% SOM	1\% SOM	2.5\% SOM	5\% SOM	
Acenaphthene	200	490	920	2000	3600	4900	75000	92000	100000	
Acenaphthylene	170	400	760	2000	3600	4900	76000	93000	100000	
Anthracene	2300	5300	9400	30000	34000	36000	520000	540000	540000	
Benzo(a)anthracene	7.5	11	13	12	14	15	170	170	180	
Benzo(a)pyrene	2.2	2.7	2.9	3.2	3.2	3.2	35	35	36	
Benzo(b)fluoranthene	2.6	3.3	3.6	4.0	4.0	4.1	45	45	45	
Benzo(k)fluoranthene	77	93	99	110	110	110	1200	1200	1200	
Benzo(g,h,i)perylene	320	340	350	360	360	360	3900	4000	4000	
Chrysene	15	22	26	30	31	32	350	350	360	
Dibenzo(a,h)anthracene	0.24	0.28	0.30	0.31	0.32	0.32	3.5	3.6	3.6	
Fluoranthene	280	560	820	1500	1600	1600	23000	23000	23000	
Fluorene	170	390	730	2200	3400	4000	60000	67000	70000	
Indeno(1,2,3-c,d)pyrene	27	36	40	45	46	46	510	510	510	
Naphthalene	1.0	2.3	4.6	1.0	2.4	4.7	110	260	510	
Phenanthrene	95	220	380	1300	1400	1500	22000	22000	23000	
Pyrene	620	1200	1900	3700	3800	3800	54000	54000	54000	

All concentration-based criteria are rounded to 2 significant figures.
The criteria assume a sandy soil type, which will be conservative for the great majority of soils (including made ground) encountered on historically contaminated sites.
Criteria have been derived by Sirius using CLEA version 1.06. Parameters for the land use cases are consistent with those given in Environment Agency (2009) "Updated Technical Background to the CLEA Model", report SC050021/SR3 but updated (where relevant) for respiration rate, exposure frequency for dermal contact outdoors, soil adherence factors for children, and plant uptake concentration factors given in CL:AIRE (2014) and Nathanail et al., (2015). No correction has been made for the "Top Two" crop types in the Residential with Homegrown Produce land use and the criteria will therefore be conservative in this regard.

Health Criteria Values (HCVs) and (except where specifically noted) chemical property data were obtained from Nathanail et al. (2015).

sirtí

APPENDIX G

GAS AND GROUNDWATER MONITORING RESULTS

JOB DETAILS:
Client:
$\begin{array}{ll}\text { Client: } & \text { Miller Homes (Northeast) Ltd } \\ \text { Site: } & \text { Former Siemens Factory, Hebburn } \\ \text { Date: } & 14 / 07 / 2016\end{array}$

Monitoring Point	GAS CONCENTRATIONS											
	Methane (\%vvi)		\%LEL		Carbon dioxide (\%v/v)		$\begin{gathered} \text { Carbon } \\ \text { monoxide (ppmv) } \end{gathered}$		Hydrogensulphide (ppmv)		Oxygen (\%v/v)	
	Peak	Steady	Min.	Steady								
WS101	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	20.7	20.7
RO103A	ND	ND	ND	ND	1.3	1.3	ND	ND	ND	ND	9.4	9.4
WS105	ND	ND	ND	ND	0.9	0.9	ND	ND	ND	ND	19.9	19.9
WS104	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	20.6	20.6
RO106	ND	ND	ND	ND	1.9	1.9	ND	ND	ND	ND	17.5	17.5
WS103	ND	ND	ND	ND	0.8	0.7	ND	ND	ND	ND	19.9	19.9
RO104	0.2	0.2	4.2	4.2	3.8	3.7	ND	ND	ND	ND	2.1	2.1
WS102	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	18.8	18.8
RO105	ND	ND	ND	ND	2.8	2.7	ND	ND	ND	ND	9.7	9.7
Max	0.2	0.2	4.2	4.2	3.8	3.7	ND	ND	ND	ND	20.7	20.7
Min	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	2.1	2.1

ND - Not detected
NR - Not recorded
Where no flow (ND) recorded, GSVs are calculated using equiment limit of detection ($0.11 / \mathrm{hr}$). Where negative flows recorded, these are converted to positive values for calculation of GSVs.
METEOROLOGICAL AND SITE INFORMATION:
State of ground:
Wind:
Cloud col
Cloud cover:
recipitation:
Time monitoring performed:
Barometric pressure (mbar):
Source:
Air Temperature (Deg. C)

Snow	
	Strong
	Overcast
	Heavy
	End
1017	End
X	Rising
17\%	After

INSTRUMENTATION TECHNICAL SPECIFICATIONS:
Ground gas meter:
Gas Range:
Gas Flow range:
Differential Pressure:
Date of last calibration:
Date of next calibration:
Ambient air check:
GFM436-12746
$\mathrm{CH}_{4} \quad 0-100 \% \mathrm{CO}_{2} \quad 0-100 \% \mathrm{O}_{2} \quad 0-25 \%$

01/07/2016
$\mathrm{CH}_{4} \quad 0.0 \% \mathrm{CO}_{2}$ \qquad O_{2} \qquad
PID:
Calibrated range
Calibration gas:
Response time:
Accuracy:
Date of last calibration:
Date of next calibration

JOB DETAILS:
Client:
Client:
Site:
Date:
Miller Homes (Northeast) Ltd
Former Siemens Factory, Hebburn 27/07/2016

Job No: C7074 $\begin{array}{lcc}\text { Visit No: } & 2 & \text { of } \\ \text { Operator: } & \text { DFB }\end{array}$
.
Project Manager:

METEOROLOGICAL AND SITE INFORMATION:

State of ground:
Wind:
Cloud col
Cloud cover:
recipitation:
Time monitoring performed:
arometric pressure (mbar):
Source:
Air Temperature (Deg. C)

\square

NSTRUMENTATION TECHNICAL SPECIFICATIONS
Ground gas meter:
Gas Range:
$\mathrm{CH}_{4} \quad 0-100 \%$
$\xrightarrow{\mathrm{CH}_{4}}$
$+$ 01/07/2016
Differential Pressure:
Date of last calibration:
Date of next calibration:
Ambient air check: \qquad $\mathrm{CO}_{2} 0.0 \%$ 21.0\%

PID:
Calibrated range
Calibration gas:
Accuracy:
Date of last calibration:
Date of next calibration:

JOB DETAILS: Client:
 Site:

Date:

Monitoring Point	GAS CONCENTRATIONS											
	Methane (\%v/v)		\%LEL		Carbon dioxide (\%v/v)		$\left\|\begin{array}{c} \text { Carbon } \\ \text { monoxide (ppmv) } \end{array}\right\|$		$\left\lvert\, \begin{array}{c\|} \text { Hydrogen } \\ \text { sulphide (ppmv) } \end{array}\right.$		Oxygen (\%v/v)	
	Peak	Steady	Min.	Steady								
WS101	ND	ND	ND	ND	0.1	0.1	ND	ND	ND	ND	20.4	20.4
RO103A	ND	ND	ND	ND	1.7	1.8	ND	ND	ND	ND	7.2	7.2
WS105	ND	ND	ND	ND	0.9	1.0	ND	ND	ND	ND	19.8	19.8
wS104	ND	ND	ND	ND	1.0	1.0	ND	ND	ND	ND	20.1	20.1
RO106	ND	ND	ND	ND	2.2	2.3	ND	ND	ND	ND	18.1	18.1
WS103	ND	ND	ND	ND	2.1	2.1	ND	ND	ND	ND	18.8	18.8
RO104	ND	ND	ND	ND	7.1	7.2	ND	ND	ND	ND	5.1	5.1
WS102	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	18.4	18.4
RO105	ND	ND	ND	ND	5.4	5.5	ND	ND	ND	ND	-0.4	-0.4
Max	ND	ND	ND	ND	7.1	7.2	ND	ND	ND	ND	20.4	20.4
Min	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	-0.4	-0.4

ND - Not detected
NR - Not recorded
Where no flow (ND) recorded, GSVs are calculated using equiment limit of detection ($0.11 / \mathrm{hr}$). Where negative flows recorded, these are converted to positive values for calculation of GSVs
MG - Made ground
NAT - Natural
C - Cohesive
G - Granular

METEOROLOGICAL AND SITE INFORMATION:

State of ground:
Wind:
Cloud cover:
recipitation:
Time monitoring performed:
arometric pressure (mbar):
Pressure trend (Daily):
Source:
Air Temperature (Deg. C)

\square

NiCAL SPECIFICATIONS

round gas meter
Gas Range:

$\mathrm{gfm} 436-12746$
$\mathrm{CH}_{4} \quad 0-100 \%$

Gas Flow range:
Differential Pressure:

$$
\begin{aligned}
& \mathrm{n}_{4} \\
& 0-20 / \mathrm{hr} \\
& +/-500 \mathrm{mb}
\end{aligned}
$$

Date of last calibration:
Ambient air check:
500 mb 01/08/2016
CH_{4} \qquad $\mathrm{CO}_{2} \square \mathrm{O}_{2}$ $\mathrm{O}_{2} \quad \square$

PID:
Calibrated range
Calibration gas:
Response time:
Accuracy:
Date of last calibration:
Date of next calibration:

Sirius Geotechnical \& Environmental Ltd.

Russel House Mill Road Langley Moor Durham
DH7 8HJ
t. 01913789972
f. 01913781537

4245 Park Approach	35 St Pauls Square,
Century Way	Birmingham,
Thorpe Park	B3 1QX
Leeds	
LS15 8GB	t: 01212324670
t. 01132649960	f: 01212123363

[^0]: Report: C7074 - Former Siemens Factory, Hebburn
 Prepared for: Miller Homes (North East) Ltd

[^1]: Report: C7074 - Former Siemens Factory, Hebburn
 Prepared for: Miller Homes (North East) Ltd

[^2]: Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

[^3]: Order Details
 Order Number:
 C7074/rormer Siemens Factory,$~$
 Hebburn/CR
 Sice:
 $\begin{array}{ll}\text { Slice: } & \text { A } \\ \text { Site Area (Ha): } & 103\end{array}$
 Search Buffer (m): 100
 Site Details
 Siemens, North Farm Road, HEBBURN, Tyne and Wear, NE31 1LX

[^4]: * Denotes test or material description outside of UKAS accreditation. \% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264.
 Recommended sample size for quantification is approximately 1 kg \# denotes deviating sample

[^5]: * Denotes test or material description outside of UKAS accreditation. \% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264.
 Recommended sample size for quantification is approximately 1 kg \# denotes deviating sample

